Skip to main content

A Computational Approach for the Discovery of Protein–RNA Networks

  • Protocol
Post-Transcriptional Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1358))

Abstract

Protein–RNA interactions play important roles in a wide variety of cellular processes, ranging from transcriptional and posttranscriptional regulation of genes to host defense against pathogens. In this chapter we present the computational approach catRAPID to predict protein–RNA interactions and discuss how it could be used to find trends in ribonucleoprotein networks. We envisage that the combination of computational and experimental approaches will be crucial to unravel the role of coding and noncoding RNAs in protein networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ascano M, Gerstberger S, Tuschl T (2013) Multi-disciplinary methods to define RNA-protein interactions and regulatory networks. Curr Opin Genet Dev 23:20–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8:479–490

    Article  CAS  PubMed  Google Scholar 

  3. Castello A et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406

    Article  CAS  PubMed  Google Scholar 

  4. Baltz AG et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690

    Article  CAS  PubMed  Google Scholar 

  5. Kwon SC et al (2013) The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biol 20:1122–1130

    Article  CAS  PubMed  Google Scholar 

  6. Terribilini M et al (2007) RNABindR: a server for analyzing and predicting RNA-binding sites in proteins. Nucleic Acids Res 35:W578–W584

    Article  PubMed Central  PubMed  Google Scholar 

  7. Fernandez M et al (2011) Prediction of dinucleotide-specific RNA-binding sites in proteins. BMC Bioinformatics 12(Suppl 13):S5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bellucci M, Agostini F, Masin M, Tartaglia GG (2011) Predicting protein associations with long noncoding RNAs. Nat Methods 8:444–445

    Article  CAS  PubMed  Google Scholar 

  9. Berman HM et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lorenz R et al (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26

    Article  PubMed Central  PubMed  Google Scholar 

  12. Doshi KJ, Cannone JJ, Cobaugh CW, Gutell RR (2004) Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics 5:105

    Article  PubMed Central  PubMed  Google Scholar 

  13. Cirillo D, Agostini F, Tartaglia GG (2013) Predictions of protein–RNA interactions. WIREs Comput Mol Sci 3:161–175

    Article  CAS  Google Scholar 

  14. Agostini F, Cirillo D, Bolognesi B, Tartaglia GG (2013) X-inactivation: quantitative predictions of protein interactions in the Xist network. Nucleic Acids Res 41:e31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Cirillo D et al (2013) Neurodegenerative diseases: quantitative predictions of protein-RNA interactions. RNA 19:129–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Johnson R, Noble W, Tartaglia GG, Buckley NJ (2012) Neurodegeneration as an RNA disorder. Prog Neurobiol 99:293–315

    Article  CAS  PubMed  Google Scholar 

  17. Finn RD et al (2009) The Pfam protein families database. Nucleic Acids Res 38(Database):D211–D222

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cirillo D, Livi CM, Agostini F, Tartaglia GG (2014) Discovery of protein-RNA networks. Mol Biosyst 10:1632–1642

    Article  CAS  PubMed  Google Scholar 

  19. Cirillo D et al (2014) Constitutive patterns of gene expression regulated by RNA-binding proteins. Genome Biol 15:R13

    Article  PubMed Central  PubMed  Google Scholar 

  20. Klus P et al (2014) The cleverSuite approach for protein characterization: predictions of structural properties, solubility, chaperone requirements and RNA-binding abilities. Bioinformatics 30:1601–1608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Agostini F, Cirillo D, Ponti RD, Tartaglia GG (2014) SeAMotE: a method for high-throughput motif discovery in nucleic acid sequences. BMC Genomics 15:925

    Article  PubMed Central  PubMed  Google Scholar 

  22. Terribilini M et al (2006) Prediction of RNA binding sites in proteins from amino acid sequence. RNA 12:1450–1462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lewis BA et al (2011) PRIDB: a protein–RNA interface database. Nucleic Acids Res 39:D277–D282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Nakashima H, Nishikawa K, Ooi T (1990) Distinct character in hydrophobicity of amino acid compositions of mitochondrial proteins. Proteins 8:173–178

    Article  CAS  PubMed  Google Scholar 

  25. Wertz DH, Scheraga HA (1978) Influence of water on protein structure. An analysis of the preferences of amino acid residues for the inside or outside and for specific conformations in a protein molecule. Macromolecules 11:9–15

    Article  CAS  PubMed  Google Scholar 

  26. Pawar AP et al (2005) Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J Mol Biol 350:379–392

    Article  CAS  PubMed  Google Scholar 

  27. Bailey TL (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27:1653–1659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zanzoni A et al (2013) Principles of self-organization in biological pathways: a hypothesis on the autogenous association of alpha-synuclein. Nucleic Acids Res 41(22):9987–9998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Agostini F et al (2013) catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics 29(22):2928–2930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ayala YM et al (2011) TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J 30:277–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Schaeffer C et al (2001) The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J 20:4803–4813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tartaglia GG, Pechmann S, Dobson CM, Vendruscolo M (2007) Life on the edge: a link between gene expression levels and aggregation rates of human proteins. Trends Biochem Sci 32:204–206

    Article  CAS  PubMed  Google Scholar 

  33. Baldwin AJ et al (2011) Metastability of native proteins and the phenomenon of amyloid formation. J Am Chem Soc 133:14160–14163

    Article  CAS  PubMed  Google Scholar 

  34. Ewen ME, Miller SJ (1996) p53 and translational control. Biochim Biophys Acta 1242:181–184

    PubMed  Google Scholar 

  35. Xu J et al (2011) Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 7:285–295

    Article  CAS  PubMed  Google Scholar 

  36. Balakrishnan K, De Maio A (2006) Heat shock protein 70 binds its own messenger ribonucleic acid as part of a gene expression self-limiting mechanism. Cell Stress Chaperones 11:44–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Parakhnevitch NM, Ivanov AV, Malygin AA, Karpova GG (2007) Human ribosomal protein S13 inhibits splicing of its own pre-mRNA. Mol Biol 41:44–51

    Article  CAS  Google Scholar 

  38. Schepens B et al (2007) A role for hnRNP C1/C2 and Unr in internal initiation of translation during mitosis. EMBO J 26:158–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Triqueneaux G, Velten M, Franzon P, Dautry F, Jacquemin-Sablon H (1999) RNA binding specificity of Unr, a protein with five cold shock domains. Nucleic Acids Res 27:1926–1934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kalyna M et al (2011) Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res. doi:10.1093/nar/gkr932

    PubMed Central  PubMed  Google Scholar 

  41. Wollerton MC, Gooding C, Wagner EJ, Garcia-Blanco MA, Smith CWJ (2004) Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol Cell 13:91–100

    Article  CAS  PubMed  Google Scholar 

  42. Lin S, Wang MJ, Tseng K-Y (2013) Polypyrimidine tract-binding protein induces p19(Ink4d) expression and inhibits the proliferation of H1299 cells. PLoS One 8:e58227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Izquierdo JM et al (2005) Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell 19:475–484

    Article  CAS  PubMed  Google Scholar 

  44. Rossbach O et al (2009) Auto- and cross-regulation of the hnRNP L proteins by alternative splicing. Mol Cell Biol 29:1442–1451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Gaetano Tartaglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marchese, D., Livi, C.M., Tartaglia, G.G. (2016). A Computational Approach for the Discovery of Protein–RNA Networks. In: Dassi, E. (eds) Post-Transcriptional Gene Regulation. Methods in Molecular Biology, vol 1358. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3067-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3067-8_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3066-1

  • Online ISBN: 978-1-4939-3067-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics