Skip to main content

Production, Isolation, and Structural Analysis of Ligands and Receptors of the TGF-β Superfamily

  • Protocol
Book cover TGF-β Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1344))

Abstract

The ability to understand the molecular mechanisms by which secreted signaling proteins of the TGF-β superfamily assemble their cell surface receptors into complexes to initiate downstream signaling is dependent upon the ability to determine atomic-resolution structures of the signaling proteins, the ectodomains of the receptors, and the complexes that they form. The structures determined to date have revealed major differences in the overall architecture of the signaling complexes formed by the TGF-βs and BMPs, which has provided insights as to how they have evolved to fulfill their distinct functions. Such studies, have however, only been applied to a few members of the TGF-β superfamily, which is largely due to the difficulty of obtaining milligram-scale quantities of highly homogenous preparations of the disulfide-rich signaling proteins and receptor ectodomains of the superfamily. Here we describe methods used to produce signaling proteins and receptor ectodomains of the TGF-β superfamily using bacterial and mammalian expression systems and procedures to purify them to homogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8(2):133–146

    Article  CAS  PubMed  Google Scholar 

  2. Sengle G, Ono RN, Sasaki T, Sakai LY (2011) Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: extracellular matrix interactions and growth factor bioavailability. J Biol Chem 286(7):5087–5099, PMCID: 3037620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T et al (2011) Latent TGF-beta structure and activation. Nature 474(7351):343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M et al (1992) TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71(6):1003–1014

    Article  CAS  PubMed  Google Scholar 

  5. Yamashita H, ten Dijke P, Franzen P, Miyazono K, Heldin CH (1994) Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem 269(31):20172–20178

    CAS  PubMed  Google Scholar 

  6. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  CAS  PubMed  Google Scholar 

  7. Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19(8):1745–1754, PMCID: 302010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Allendorph GP, Vale WW, Choe S (2006) Structure of the ternary signaling complex of a TGF-beta superfamily member. Proc Natl Acad Sci U S A 103(20):7643–7648, PMCID: 1456805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Greenwald J, Groppe J, Gray P, Wiater E, Kwiatkowski W, Vale W et al (2003) The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol Cell 11(3):605–617

    Article  CAS  PubMed  Google Scholar 

  10. Groppe J, Hinck CS, Samavarchi-Tehrani P, Zubieta C, Schuermann JP, Taylor AB et al (2008) Cooperative assembly of TGF-beta superfamily signaling complexes is mediated by two disparate mechanisms and distinc modes of receptor binding. Mol Cell 29(2):157–168

    Google Scholar 

  11. Kirsch T, Sebald W, Dreyer MK (2000) Crystal structure of the BMP-2-BRIA ectodomain complex. Nat Struct Biol 7(6):492–496

    Article  CAS  PubMed  Google Scholar 

  12. Radaev S, Zou Z, Huang T, Lafer EM, Hinck AP, Sun PD (2010) Ternary complex of transforming growth factor-beta1 reveals isoform-specific ligand recognition and receptor recruitment in the superfamily. J Biol Chem 285(19):14806–14814, PMCID: 2863181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Weber D, Kotzsch A, Nickel J, Harth S, Seher A, Mueller U et al (2007) A silent H-bond can be mutationally activated for high-affinity interaction of BMP-2 and activin type IIB receptor. BMC Struct Biol 7:6, PMCID: 1802081

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Massagué J (2008) A very private TGF-beta receptor embrace. Mol Cell 29(2):149–150

    Article  PubMed  CAS  Google Scholar 

  15. Nickel J, Sebald W, Groppe JC, Mueller TD (2009) Intricacies of BMP receptor assembly. Cytokine Growth Factor Rev 20(5–6):367–377

    Article  CAS  PubMed  Google Scholar 

  16. Hinck AP, O’Connor-McCourt MD (2011) Structures of TGF-beta receptor complexes: implications for function and therapeutic intervention using ligand traps. Curr Pharm Biotechnol 12(12):2081–2098

    Article  CAS  PubMed  Google Scholar 

  17. Hinck AP (2012) Structural studies of the TGF-betas and their receptors – insights into evolution of the TGF-beta superfamily. FEBS Lett 586(14):1860–1870

    Article  CAS  PubMed  Google Scholar 

  18. Zou Z, Sun PD (2004) Overexpression of human transforming growth factor-beta1 using a recombinant CHO cell expression system. Protein Expr Purif 37(2):265–272

    Article  CAS  PubMed  Google Scholar 

  19. Daopin S, Piez KA, Ogawa Y, Davies DR (1992) Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily. Science 257(5068):369–373

    Article  CAS  PubMed  Google Scholar 

  20. Hinck AP, Archer SJ, Qian SW, Roberts AB, Sporn MB, Weatherbee JA et al (1996) Transforming growth factor beta 1: three-dimensional structure in solution and comparison with the X-ray structure of transforming growth factor beta 2. Biochemistry 35(26):8517–8534

    Article  CAS  PubMed  Google Scholar 

  21. Mittl PR, Priestle JP, Cox DA, McMaster G, Cerletti N, Grutter MG (1996) The crystal structure of TGF-beta 3 and comparison to TGF-beta 2: implications for receptor binding. Protein Sci 5(7):1261–1271, PMCID: 2143453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Schlunegger MP, Grutter MG (1992) An unusual feature revealed by the crystal structure at 2.2 A resolution of human transforming growth factor-beta 2. Nature 358(6385):430–434

    Article  CAS  PubMed  Google Scholar 

  23. Sun PD, Davies DR (1995) The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct 24:269–291

    Article  CAS  PubMed  Google Scholar 

  24. Gentry LE, Nash BW (1990) The pro domain of pre-pro-transforming growth factor beta 1 when independently expressed is a functional binding protein for the mature growth factor. Biochemistry 29(29):6851–6857

    Article  CAS  PubMed  Google Scholar 

  25. Gray AM, Mason AJ (1990) Requirement for activin A and transforming growth factor – beta 1 pro-regions in homodimer assembly. Science 247(4948):1328–1330

    Article  CAS  PubMed  Google Scholar 

  26. Bourdrel L, Lin CH, Lauren SL, Elmore RH, Sugarman BJ, Hu S et al (1993) Recombinant human transforming growth factor-beta 1: expression by Chinese hamster ovary cells, isolation, and characterization. Protein Expr Purif 4(2):130–140

    Article  CAS  PubMed  Google Scholar 

  27. Bustos-Valenzuela JC, Halcsik E, Bassi EJ, Demasi MA, Granjeiro JM, Sogayar MC (2010) Expression, purification, bioactivity, and partial characterization of a recombinant human bone morphogenetic protein-7 produced in human 293T cells. Mol Biotechnol 46(2):118–126

    Article  CAS  PubMed  Google Scholar 

  28. Chitty DW, Tremblay RG, Ribecco-Lutkiewicz M, Haukenfrers J, Zurakowski B, Massie B et al (2012) Development of BMP7-producing human cells, using a third generation lentiviral gene delivery system. J Neurosci Methods 205(1):17–27

    Article  CAS  PubMed  Google Scholar 

  29. Israel DI, Nove J, Kerns KM, Kaufman RJ, Rosen V, Cox KA et al (1996) Heterodimeric bone morphogenetic proteins show enhanced activity in vitro and in vivo. Growth Factors 13(3–4):291–300

    Article  CAS  PubMed  Google Scholar 

  30. Jones WK, Richmond EA, White K, Sasak H, Kusmik W, Smart J et al (1994) Osteogenic protein-1 (OP-1) expression and processing in Chinese hamster ovary cells: isolation of a soluble complex containing the mature and pro-domains of OP-1. Growth Factors 11(3):215–225

    Article  CAS  PubMed  Google Scholar 

  31. Sampath TK, Maliakal JC, Hauschka PV, Jones WK, Sasak H, Tucker RF et al (1992) Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem 267(28):20352–20362

    CAS  PubMed  Google Scholar 

  32. Sathyamurthy M, Lee JS, Park JH, Kim YJ, Jeong JY, Jang JW et al (2012) Overexpression of PACEsol improves BMP-7 processing in recombinant CHO cells. J Biotechnol 164(2):336–339

    Article  CAS  PubMed  Google Scholar 

  33. Zou Z, Sun PD (2006) An improved recombinant mammalian cell expression system for human transforming growth factor-beta2 and -beta3 preparations. Protein Expr Purif 50(1):9–17

    Article  CAS  PubMed  Google Scholar 

  34. Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98(16):9306–9311, PMCID: 55416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Li Q, Liu X, Wu Y, An J, Hexige S, Ling Y et al (2012) The conditioned medium from a stable human GDF3-expressing CHO cell line, induces the differentiation of PC12 cells. Mol Cell Biochem 359(1–2):115–123

    CAS  PubMed  Google Scholar 

  36. Peng J, Li Q, Wigglesworth K, Rangarajan A, Kattamuri C, Peterson RT et al (2013) Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci U S A 110(8):E776–E785, PMCID: 3581982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Takaoka K, Yoshikawa H, Hasimoto J, Masuhara K, Miyamoto S, Suzuki S et al (1993) Gene cloning and expression of a bone morphogenetic protein derived from a murine osteosarcoma. Clin Orthop Relat Res 294:344–352

    PubMed  Google Scholar 

  38. Ulloa L, Creemers JW, Roy S, Liu S, Mason J, Tabibzadeh S (2001) Lefty proteins exhibit unique processing and activate the MAPK pathway. J Biol Chem 276(24):21387–21396

    Article  CAS  PubMed  Google Scholar 

  39. Ushiro Y, Hashimoto O, Seki M, Hachiya A, Shoji H, Hasegawa Y (2006) Analysis of the function of activin betaC subunit using recombinant protein. J Reprod Dev 52(4):487–495

    Article  CAS  PubMed  Google Scholar 

  40. Walton KL, Makanji Y, Wilce MC, Chan KL, Robertson DM, Harrison CA (2009) A common biosynthetic pathway governs the dimerization and secretion of inhibin and related transforming growth factor beta (TGFbeta) ligands. J Biol Chem 284(14):9311–9320, PMCID: 2666583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Papakostas TD, Pieretti-Vanmarcke R, Nicolaou F, Thanos A, Trichonas G, Koufomichali X et al (2010) Development of an efficiently cleaved, bioactive, highly pure FLAG-tagged recombinant human Mullerian Inhibiting Substance. Protein Expr Purif 70(1):32–38, PMCID: 3581853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Cronin CN, Thompson DA, Martin F (1998) Expression of bovine activin-A and inhibin-A in recombinant baculovirus-infected Spodoptera frugiperda Sf 21 insect cells. Int J Biochem Cell Biol 30(10):1129–1145

    Article  CAS  PubMed  Google Scholar 

  43. Maruoka Y, Oida S, Iimura T, Takeda K, Asahina I, Enomoto S et al (1995) Production of functional human bone morphogenetic protein-2 using a baculovirus/Sf-9 insect cell system. Biochem Mol Biol Int 35(5):957–963

    CAS  PubMed  Google Scholar 

  44. Papakonstantinou T, Harris SJ, Fredericks D, Harrison C, Wallace EM, Hearn MT (2009) Synthesis, purification and bioactivity of recombinant human activin A expressed in the yeast Pichia pastoris. Protein Expr Purif 64(2):131–138

    Article  CAS  PubMed  Google Scholar 

  45. Fredericks D, Clay R, Warner T, O’Connor A, de Kretser DM, Hearn MT (2010) Optimization of the expression of recombinant human activin A in the yeast Pichia pastoris. Biotechnol Prog 26(2):372–383

    Article  CAS  PubMed  Google Scholar 

  46. Rosenwald AG, Stanley P, Krag SS (1989) Control of carbohydrate processing: increased beta-1,6 branching in N-linked carbohydrates of Lec9 CHO mutants appears to arise from a defect in oligosaccharide-dolichol biosynthesis. Mol Cell Biol 9(3):914–924, PMCID: 362680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189(1):113–130

    Article  CAS  PubMed  Google Scholar 

  48. Cerletti N (2000) Process for the production of biologically active dimeric protein. US Patent 6057430

    Google Scholar 

  49. Ejima D, Ono K, Tsumoto K, Arakawa T, Eto Y (2006) A novel “reverse screening” to identify refolding additives for activin-A. Protein Expr Purif 47(1):45–51

    Article  CAS  PubMed  Google Scholar 

  50. von Einem S, Schwarz E, Rudolph R (2010) A novel TWO-STEP renaturation procedure for efficient production of recombinant BMP-2. Protein Expr Purif 73(1):65–69

    Article  CAS  Google Scholar 

  51. Sieber C, Ploger F, Schwappacher R, Bechtold R, Hanke M, Kawai S et al (2006) Monomeric and dimeric GDF-5 show equal type I receptor binding and oligomerization capability and have the same biological activity. Biol Chem 387(4):451–460

    Article  CAS  PubMed  Google Scholar 

  52. Zuniga JE, Groppe JC, Cui Y, Hinck CS, Contreras-Shannon V, Pakhomova ON et al (2005) Assembly of TbetaRI:TbetaRII:TGFbeta ternary complex in vitro with receptor extracellular domains is cooperative and isoform-dependent. J Mol Biol 354(5):1052–1068

    Article  CAS  PubMed  Google Scholar 

  53. Ilangovan U, Deep S, Hinck CS, Hinck AP (2004) Sequential resonance assignments of the extracellular domain of the human TGFbeta type II receptor in complex with monomeric TGFbeta3. J Biomol NMR 29(1):103–104

    Article  CAS  PubMed  Google Scholar 

  54. Dechavanne V, Barrillat N, Borlat F, Hermant A, Magnenat L, Paquet M et al (2011) A high-throughput protein refolding screen in 96-well format combined with design of experiments to optimize the refolding conditions. Protein Expr Purif 75(2):192–203

    Article  CAS  PubMed  Google Scholar 

  55. Mahlawat P, Ilangovan U, Biswas T, Sun LZ, Hinck AP (2012) Structure of the Alk1 extracellular domain and characterization of its bone morphogenetic protein (BMP) binding properties. Biochemistry 51(32):6328–6341, PMCID: 3448977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Townson SA, Martinez-Hackert E, Greppi C, Lowden P, Sako D, Liu J et al (2012) Specificity and structure of a high affinity activin receptor-like kinase 1 (ALK1) signaling complex. J Biol Chem 287(33):27313–27325, PMCID: 3431715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Klages J, Kotzsch A, Coles M, Sebald W, Nickel J, Muller T et al (2008) The solution structure of BMPR-IA reveals a local disorder-to-order transition upon BMP-2 binding. Biochemistry 47(46):11930–11939

    Article  CAS  PubMed  Google Scholar 

  58. Zuniga JE, Ilangovan U, Mahlawat P, Hinck CS, Huang T, Groppe JC et al (2011) The TbetaR-I pre-helix extension is structurally ordered in the unbound form and its flanking prolines are essential for binding. J Mol Biol 412(4):601–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Nickel J, Kotzsch A, Sebald W, Mueller TD (2005) A single residue of GDF-5 defines binding specificity to BMP receptor IB. J Mol Biol 349(5):933–947

    Article  CAS  PubMed  Google Scholar 

  60. Greenwald J, Fischer WH, Vale WW, Choe S (1999) Three-finger toxin fold for the extracellular ligand-binding domain of the type II activin receptor serine kinase. Nat Struct Biol 6(1):18–22

    Article  CAS  PubMed  Google Scholar 

  61. Thompson TB, Woodruff TK, Jardetzky TS (2003) Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-beta ligand:receptor interactions. EMBO J 22(7):1555–1566, PMCID: 152900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Mace PD, Cutfield JF, Cutfield SM (2006) High resolution structures of the bone morphogenetic protein type II receptor in two crystal forms: implications for ligand binding. Biochem Biophys Res Commun 351(4):831–838

    Article  CAS  PubMed  Google Scholar 

  63. Boesen CC, Radaev S, Motyka SA, Patamawenu A, Sun PD (2002) The 1.1 A crystal structure of human TGF-beta type II receptor ligand binding domain. Structure 10(7):913–919

    Article  CAS  PubMed  Google Scholar 

  64. Deep S, Walker KP 3rd, Shu Z, Hinck AP (2003) Solution structure and backbone dynamics of the TGFbeta type II receptor extracellular domain. Biochemistry 42(34):10126–10139

    Article  CAS  PubMed  Google Scholar 

  65. Hart PJ, Deep S, Taylor AB, Shu Z, Hinck CS, Hinck AP (2002) Crystal structure of the human TbetaR2 ectodomain – TGF-beta3 complex. Nat Struct Biol 9(3):203–208

    CAS  PubMed  Google Scholar 

  66. Alt A, Miguel-Romero L, Donderis J, Aristorena M, Blanco FJ, Round A et al (2012) Structural and functional insights into endoglin ligand recognition and binding. PLoS One 7(2):e29948, PMCID: 3275592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Castonguay R, Werner ED, Matthews RG, Presman E, Mulivor AW, Solban N et al (2011) Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem 286(34):30034–30046, PMCID: 3191044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. del Re E, Sidis Y, Fabrizio DA, Lin HY, Schneyer A (2004) Reconstitution and analysis of soluble inhibin and activin receptor complexes in a cell-free system. J Biol Chem 279(51):53126–53135

    Article  PubMed  CAS  Google Scholar 

  69. Lin HY, Moustakas A, Knaus P, Wells RG, Henis YI, Lodish HF (1995) The soluble exoplasmic domain of the type II transforming growth factor (TGF)-beta receptor. A heterogeneously glycosylated protein with high affinity and selectivity for TGF-beta ligands. J Biol Chem 270(6):2747–2754

    Article  CAS  PubMed  Google Scholar 

  70. Tsang ML, Zhou L, Zheng BL, Wenker J, Fransen G, Humphrey J et al (1995) Characterization of recombinant soluble human transforming growth factor-beta receptor type II (rhTGF-beta sRII). Cytokine 7(5):389–397

    Article  CAS  PubMed  Google Scholar 

  71. Goetschy JF, Letourneur O, Cerletti N, Horisberger MA (1996) The unglycosylated extracellular domain of type-II receptor for transforming growth factor-beta. A novel assay for characterizing ligand affinity and specificity. Eur J Biochem 241(2):355–362

    Article  CAS  PubMed  Google Scholar 

  72. Greenwald J, Le V, Corrigan A, Fischer W, Komives E, Vale W et al (1998) Characterization of the extracellular ligand-binding domain of the type II activin receptor. Biochemistry 37(47):16711–16718

    Article  CAS  PubMed  Google Scholar 

  73. Boesen CC, Motyka SA, Patamawenu A, Sun PD (2000) Development of a recombinant bacterial expression system for the active form of a human transforming growth factor beta type II receptor ligand binding domain. Protein Expr Purif 20(1):98–104

    Article  CAS  PubMed  Google Scholar 

  74. Komesli S, Vivien D, Dutartre P (1998) Chimeric extracellular domain type II transforming growth factor (TGF)-beta receptor fused to the Fc region of human immunoglobulin as a TGF-beta antagonist. Eur J Biochem 254(3):505–513

    Article  CAS  PubMed  Google Scholar 

  75. Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J et al (2002) Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109(12):1551–1559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J et al (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109(12):1607–1615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Mitchell D, Pobre EG, Mulivor AW, Grinberg AV, Castonguay R, Monnell TE et al (2010) ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther 9(2):379–388

    Article  CAS  PubMed  Google Scholar 

  78. Putnam C. Scripps Protein Calculator v. 3.3. 2013 [updated 2013; cited]. http://www.scripps.edu/~cdputnam/protcalc.html

  79. Hinck AP, Walker KP 3rd, Martin NR, Deep S, Hinck CS, Freedberg DI (2000) Sequential resonance assignments of the extracellular ligand binding domain of the human TGF-beta type II receptor. J Biomol NMR 18(4):369–370

    Article  CAS  PubMed  Google Scholar 

  80. Gasparian ME, Elistratov PA, Yakimov SA, Dolgikh DA, Kirpichnikov MP (2010) An efficient method for expression in Escherichia coli and purification of the extracellular ligand binding domain of the human TGFbeta type II receptor. J Biotechnol 148(2–3):113–118

    Article  CAS  PubMed  Google Scholar 

  81. Hatta T, Konishi H, Katoh E, Natsume T, Ueno N, Kobayashi Y et al (2000) Identification of the ligand-binding site of the BMP type IA receptor for BMP-4. Biopolymers 55(5):399–406

    Article  CAS  PubMed  Google Scholar 

  82. Kirsch T, Nickel J, Sebald W (2000) Isolation of recombinant BMP receptor IA ectodomain and its 2:1 complex with BMP-2. FEBS Lett 468(2-3):215–219

    Article  CAS  PubMed  Google Scholar 

  83. Marlow MS, Chim N, Brown CB, Barnett JV, Krezel AM (2000) 1H, 13C, and 15N backbone assignments of the ligand binding domain of TGFbeta type II receptor. J Biomol NMR 17(4):349–350

    Article  CAS  PubMed  Google Scholar 

  84. Yin H, Yeh LC, Hinck AP, Lee JC (2008) Characterization of ligand-binding properties of the human BMP type II receptor extracellular domain. J Mol Biol 378(1):191–203

    Article  CAS  PubMed  Google Scholar 

  85. Baardsnes J, Hinck CS, Hinck AP, O’Connor-McCourt MD (2009) TbetaR-II discriminates the high- and low-affinity TGF-beta isoforms via two hydrogen-bonded ion pairs. Biochemistry 48(10):2146–2155, PMCID: 2801812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. De Crescenzo G, Grothe S, Lortie R, Debanne MT, O’Connor-McCourt M (2000) Real-time kinetic studies on the interaction of transforming growth factor alpha with the epidermal growth factor receptor extracellular domain reveal a conformational change model. Biochemistry 39(31):9466–9476

    Article  PubMed  CAS  Google Scholar 

  87. De Crescenzo G, Grothe S, Zwaagstra J, Tsang M, O’Connor-McCourt MD (2001) Real-time monitoring of the interactions of transforming growth factor-beta (TGF-beta ) isoforms with latency-associated protein and the ectodomains of the TGF-beta type II and III receptors reveals different kinetic models and stoichiometries of binding. J Biol Chem 276(32):29632–29643

    Article  PubMed  Google Scholar 

  88. De Crescenzo G, Hinck CS, Shu Z, Zuniga J, Yang J, Tang Y et al (2006) Three key residues underlie the differential affinity of the TGFbeta isoforms for the TGFbeta type II receptor. J Mol Biol 355(1):47–62

    Article  PubMed  CAS  Google Scholar 

  89. De Crescenzo G, Pham PL, Durocher Y, Chao H, O’Connor-McCourt MD (2004) Enhancement of the antagonistic potency of transforming growth factor-beta receptor extracellular domains by coiled coil-induced homo- and heterodimerization. J Biol Chem 279(25):26013–26018

    Article  PubMed  CAS  Google Scholar 

  90. De Crescenzo G, Pham PL, Durocher Y, O'Connor-McCourt MD (2003) Transforming growth factor-beta (TGF-beta) binding to the extracellular domain of the type II TGF-beta receptor: receptor capture on a biosensor surface using a new coiled-coil capture system demonstrates that avidity contributes significantly to high affinity binding. J Mol Biol 328(5):1173–1183

    Article  PubMed  CAS  Google Scholar 

  91. Huang T, David L, Mendoza V, Yang Y, Villarreal M, De K et al (2011) TGF-beta signalling is mediated by two autonomously functioning TbetaRI:TbetaRII pairs. EMBO J 30(7):1263–1276, PMCID: 3094126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Li L, Orner BP, Huang T, Hinck AP, Kiessling LL (2010) Peptide ligands that use a novel binding site to target both TGF-beta receptors. Mol Biosyst 6(12):2392–2402, PMCID: 3064480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Mendoza V, Vilchis-Landeros MM, Mendoza-Hernandez G, Huang T, Villarreal MM, Hinck AP et al (2009) Betaglycan has two independent domains required for high affinity TGF-beta binding: proteolytic cleavage separates the domains and inactivates the neutralizing activity of the soluble receptor. Biochemistry 48(49):11755–11765, PMCID: 2796082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. O’Connor-McCourt MD, Segarubu O, Grothe S, Tsang M, Weatherbee JA (1995) Analysis of the interaction between two TGF-beta-binding proteins and three TGF-beta isoforms using surface plasmon resonance. Ann N Y Acad Sci 766:300–302

    Article  PubMed  Google Scholar 

  95. Zwaagstra JC, Sulea T, Baardsnes J, Lenferink AE, Collins C, Cantin C et al (2012) Engineering and therapeutic application of single-chain bivalent TGF-beta family traps. Mol Cancer Ther 11(7):1477–1487

    Article  CAS  PubMed  Google Scholar 

  96. Allendorph GP, Isaacs MJ, Kawakami Y, Izpisua Belmonte JC, Choe S (2007) BMP-3 and BMP-6 structures illuminate the nature of binding specificity with receptors. Biochemistry 46(43):12238–12247

    Article  CAS  PubMed  Google Scholar 

  97. Allendorph GP, Read JD, Kawakami Y, Kelber JA, Isaacs MJ, Choe S (2011) Designer TGFbeta superfamily ligands with diversified functionality. PLoS One 6(11):e26402, PMCID: 3208551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Brown MA, Zhao Q, Baker KA, Naik C, Chen C, Pukac L et al (2005) Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem 280(26):25111–25118

    Article  CAS  PubMed  Google Scholar 

  99. Greenwald J, Vega ME, Allendorph GP, Fischer WH, Vale W, Choe S (2004) A flexible activin explains the membrane-dependent cooperative assembly of TGF-beta family receptors. Mol Cell 15(3):485–489

    Article  CAS  PubMed  Google Scholar 

  100. Keller S, Nickel J, Zhang JL, Sebald W, Mueller TD (2004) Molecular recognition of BMP-2 and BMP receptor IA. Nat Struct Mol Biol 11(5):481–488

    Article  CAS  PubMed  Google Scholar 

  101. Kotzsch A, Nickel J, Seher A, Heinecke K, van Geersdaele L, Herrmann T et al (2008) Structure analysis of bone morphogenetic protein-2 type I receptor complexes reveals a mechanism of receptor inactivation in juvenile polyposis syndrome. J Biol Chem 283(9):5876–5887

    Article  CAS  PubMed  Google Scholar 

  102. Saremba S, Nickel J, Seher A, Kotzsch A, Sebald W, Mueller TD (2008) Type I receptor binding of bone morphogenetic protein 6 is dependent on N-glycosylation of the ligand. FEBS J 275(1):172–183

    Article  CAS  PubMed  Google Scholar 

  103. Abdiche Y, Malashock D, Pinkerton A, Pons J (2008) Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal Biochem 377(2):209–217

    Article  CAS  PubMed  Google Scholar 

  104. Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 1:100

    Article  PubMed  CAS  Google Scholar 

  105. Bocharov EV, Blommers MJ, Kuhla J, Arvinte T, Bürgi R, Arseniev AS (2000) Sequence-specific 1H and 15N assignment and secondary structure of transforming growth factor beta3. J Biomol NMR 16(2):179–180

    Article  CAS  PubMed  Google Scholar 

  106. Bocharov EV, Korzhnev DM, Blommers MJ, Arvinte T, Orekhov VY, Billeter M et al (2002) Dynamics-modulated biological activity of transforming growth factor beta3. J Biol Chem 277(48):46273–46279

    Article  CAS  PubMed  Google Scholar 

  107. Marlow MS, Brown CB, Barnett JV, Krezel AM (2003) Solution structure of the chick TGFbeta type II receptor ligand-binding domain. J Mol Biol 326(4):989–997

    Article  CAS  PubMed  Google Scholar 

  108. Griffith DL, Keck PC, Sampath TK, Rueger DC, Carlson WD (1996) Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta superfamily. Proc Natl Acad Sci U S A 93(2):878–883, PMCID: 40151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Scheufler C, Sebald W, Hulsmeyer M (1999) Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. J Mol Biol 287(1):103–115

    Article  CAS  PubMed  Google Scholar 

  110. Schreuder H, Liesum A, Pohl J, Kruse M, Koyama M (2005) Crystal structure of recombinant human growth and differentiation factor 5: evidence for interaction of the type I and type II receptor-binding sites. Biochem Biophys Res Commun 329(3):1076–1086

    Article  CAS  PubMed  Google Scholar 

  111. de Vries SJ, van Dijk ADJ, Krzeminski M, van Dijk M, Thureau A, Hsu V et al (2007) HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69:726–733

    Article  PubMed  CAS  Google Scholar 

  112. Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737

    Article  CAS  PubMed  Google Scholar 

  113. Ritchie DW (2008) Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci 9(1):1–15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would also like to acknowledge the funding agencies that have supported the TGF-β research underway in his laboratory, including the NIH (GM58670 and CA172886), the Robert A. Welch Foundation (AQ-1842), and the Cancer Prevention and Research Institute in Texas (RP120867).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Hinck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Huang, T., Hinck, A.P. (2016). Production, Isolation, and Structural Analysis of Ligands and Receptors of the TGF-β Superfamily. In: Feng, XH., Xu, P., Lin, X. (eds) TGF-β Signaling. Methods in Molecular Biology, vol 1344. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2966-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2966-5_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2965-8

  • Online ISBN: 978-1-4939-2966-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics