Skip to main content

The Role of Coagulation Factor Signaling in Angiogenesis and Vascular Remodeling

  • Chapter
  • First Online:
Book cover Endothelial Signaling in Development and Disease

Abstract

This chapter provides an overview on the signaling function of the clotting system. Coagulation proteases can activate protease-activated receptors (PARs) and the coagulation initiator tissue factor (TF) orchestrates many of these signaling processes. The current view of the hemostatic system with focus on the coagulation cascade as a serine protease network will be delineated and the activation mechanism of PARs is explained. This chapter provides an overview of the roles of the coagulation system during embryonic development of the vascular system by describing vascular phenotypes observed in mouse models of coagulation factor or PAR deficiency. In addition, the complex interplay of coagulation factor signaling and coagulation factor-dependent effects on the induction of angiogenic and vasoactive factors are described. Together, this chapter aims to provide an overview on how coagulation factor signaling is involved in physiologic and pathologic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359:938–49.

    Article  CAS  PubMed  Google Scholar 

  2. Broze GJ Jr. Tissue factor pathway inhibitor. Thromb Haemost. 1995;74:90–3.

    CAS  PubMed  Google Scholar 

  3. Esmon CT, Esmon NL. The link between vascular features and thrombosis. Annu Rev Physiol. 2011;73:503–14.

    Article  CAS  PubMed  Google Scholar 

  4. Massberg S, Grahl L, von Bruehl ML, Manukyan D, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16:887–96.

    Article  CAS  PubMed  Google Scholar 

  5. Opal SM, Esmon C. Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care. 2003;7:22–8.

    Google Scholar 

  6. Østerud B, Bjørklid E. Sources of tissue factor. Semin Thromb Hemost. 2006;32:11–23.

    Article  PubMed  Google Scholar 

  7. Ruggeri ZM. The role of von Willebrand factor in thrombus formation. Thromb Res. 2007;120:S5–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Stegner D, Nieswandt B. Platelet receptor signaling in thrombus formation. J Mol Med. 2011;89:109–21.

    Article  CAS  PubMed  Google Scholar 

  9. Zwaal RF, Comfurius P, Bevers EM. Mechanisms and function of changes in membrane-phospholipid asymmetry in platelets and erythrocytes. Biochem Soc Trans. 1993;21:248–53.

    Article  CAS  PubMed  Google Scholar 

  10. Renné T. The procoagulant and proinflammatory plasma contact system. Semin Immunopathol. 2012;34:31–41.

    Article  PubMed  CAS  Google Scholar 

  11. Colman RW, Marder VJ, Clowes AW, George JN, Goldhaber SZ. Hemostasis and thrombosis: basic principles and clinical practice. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  12. Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P, Song Y, Tzima E, Kennerknecht E, Niepmann M, von Bruehl ML, Sedding D, Massberg S, Günther A, Engelmann B, Preissner KT. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A. 2007;104:6388–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Müller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, Schmidbauer S, Gahl WA, Morrissey JH, Renné T. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell. 2009;139:1143–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Matafonov A, Sarilla S, Sun MF, Sheehan JP, Serebrov V, Verhamme IM, Gailani D. Activation of factor XI by products of prothrombin activation. Blood. 2011;118:437–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Fleck RA, Rao LV, Rapaport SI, Varki N. Lokalization of human tissue factor antigen by immunostaining with monospecific, polyclonal anti-human tissue factor antibody. Thromb Res. 1990;59:421–37.

    Article  CAS  PubMed  Google Scholar 

  16. Drake TA, Morrissey JH, Edgington TS. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am J Pathol. 1989;134:1087–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Giesen PL, Rauch U, Bohrmann B, Kling D, Roqué M, Fallon JT, Badimon JJ, Himber J, Riederer MA, Nemerson Y. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci U S A. 1999;96:2311–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Reinhardt C. New locations of intravascular tissue factor: indications. Hämostaseologie. 2007;27:55–8.

    CAS  PubMed  Google Scholar 

  19. Müller I, Klocke A, Alex M, Kotzsch M, Luther T, Morgenstern E, Zieseniss S, Zahler S, Preissner K, Engelmann B. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J. 2003;17:476–8.

    PubMed  Google Scholar 

  20. Bazan JF. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A. 1990;87:6934–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Harlos K, Martin DM, O’Brien DP, Jones EY, Stuart DI, Polikarpov I, Miller A, Tuddenham EG, Boys CW. Crystal structure of the extracellular region of human tissue factor. Nature. 1994;370:662–6.

    Article  CAS  PubMed  Google Scholar 

  22. Ruf W, Edgington TS. Two sites in the tissue factor extracellular domain mediate the recognition of the ligand factor VIIa. Proc Natl Acad Sci U S A. 1991;88:8430–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ruf W, Schullek JR, Stone MJ, Edgington TS. Mutational mapping of functional residues in tissue factor: identification of factor VII recognition determinants in both structural modules of the predicted cytokine receptor homology domain. Biochemistry. 1994;33:1565–72.

    Article  CAS  PubMed  Google Scholar 

  24. Nemerson Y, Esnouf MP. Activation of a proteolytic system by a membrane lipoprotein: mechanism of action of tissue factor. Proc Natl Acad Sci U S A. 1973;70:310–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Østerud B, Rapaport SI. Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation. Proc Natl Acad Sci U S A. 1977;74:5260–4.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Jesty J, Spencer AK, Nakashima Y, Nemerson Y, Konigsberg W. The activation of coagulation factor X. Identity of cleavage sites in the alternative activation pathways and characterization of the COOH-terminal peptide. J Biol Chem. 1975;250:4497–504.

    CAS  PubMed  Google Scholar 

  27. Mann KG, Jenny RJ, Krishnaswamy S. Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Annu Rev Biochem. 1988;57:915–56.

    Article  CAS  PubMed  Google Scholar 

  28. Bode W. The structure of thrombin, a chameleon-like proteinase. J Thromb Haemost. 2005;3:2379–88.

    Article  CAS  PubMed  Google Scholar 

  29. Griffin JH. Blood coagulation. The thrombin paradox. Nature. 1995;378:337–8.

    Article  CAS  PubMed  Google Scholar 

  30. Esmon CT. The regulation of natural anticoagulant pathways. Science. 1987;235:1348–52.

    Article  CAS  PubMed  Google Scholar 

  31. Stearns-Kurosawa DJ, Kurosawa S, Mollica JS, Ferrell GL, Esmon CT. The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex. Proc Natl Acad Sci U S A. 1996;93:10212–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Esmon CT. The protein C pathway. Crit Care Med. 2000;28:S44–8.

    Article  CAS  PubMed  Google Scholar 

  33. Van Hinsbergh VW, Bertina RM, van Wijngaarden A, van Tilburg NH, Emeis JJ, Haverkate F. Activated protein C decreases plasminogen activator-inhibitor activity in endothelial cell-conditioned medium. Blood. 1985;65:444–51.

    PubMed  Google Scholar 

  34. Riewald M, Petrovan RJ, Donner A, Mueller BM, Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science. 2002;296:1880–2.

    Article  CAS  PubMed  Google Scholar 

  35. Grey ST, Tsuchida A, Hau H, Orthner CL, Salem HH, Hancock WW. Selective inhibitory effects of the anticoagulant activated protein C on the responses of human mononuclear phagocytes to LPS, IFN-gamma, or phorbol ester. J Immunol. 1994;153:3664–72.

    CAS  PubMed  Google Scholar 

  36. Mosnier LO, Zlokovic BV, Griffin JH. The cytoprotective protein C pathway. Blood. 2007;109:3161–72.

    Article  CAS  PubMed  Google Scholar 

  37. Sambrano GR, Weiss EJ, Zheng YW, Huang W, Coughlin SR. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature. 2001;413:74–8.

    Article  CAS  PubMed  Google Scholar 

  38. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64:1057–68.

    Article  CAS  PubMed  Google Scholar 

  39. Nystedt S, Emilsson K, Wahlestedt C, Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A. 1994;91:9208–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature. 1997;386:502-6.

    Article  CAS  PubMed  Google Scholar 

  41. Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV Jr, Tam C, Coughlin SR. A dual thrombin receptor system for platelet activation. Nature. 1998;394:690–4.

    Article  CAS  PubMed  Google Scholar 

  42. Kong W, McConaloque K, Khitin LM, Hollenberg MD, Payan DG, Böhm SK, Bunnett NW. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci U S A. 1997;94:8884–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Nelken NA, Soifer SJ, O’Keefe J, Vu TK, Charo IF, Coughlin SR. Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest. 1992;90:1614–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Schechter NM, Brass LF, Lavker RM, Jensen PJ. Reaction of mast cell proteases tryptase and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. J Cell Physiol. 1998;176:365–73.

    Article  CAS  PubMed  Google Scholar 

  45. D’Andrea MR, Rogahan CJ, Andrade-Gordon P. Localization of protease-activated receptors-1 and -2 in human mast cells: indications for an amplified mast cell degranulation cascade. Biotech Histochem. 2000;75:85–90.

    Article  PubMed  Google Scholar 

  46. Bizios R, Lai L, Fenton JW 2nd, Malik AB. Thrombin-induced chemotaxis and aggregation of neutrophils. J Cell Physiol. 1986;128:485–90.

    Article  CAS  PubMed  Google Scholar 

  47. Colognato R, Slupsky JR, Jendrach M, Burysek L, Syrovets T, Simmet T. Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells. Blood. 2003;102:2645–52.

    Article  CAS  PubMed  Google Scholar 

  48. D’Andrea MR, Derian CK, Santulli RJ, Andrade-Gordon P. Differential expression of protease-activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues. Am J Pathol. 2001;158:2031–41.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Coughlin SR. Thrombin signaling and protease-activated receptors. Nature. 2000;407:258–64.

    Article  CAS  PubMed  Google Scholar 

  50. Hirano K. The roles of proteinase-activated receptors in the vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol. 2007;27:27–36.

    Article  CAS  PubMed  Google Scholar 

  51. Steinberg SF. The cardiovascular actions of protease-activated receptors. Mol Pharmacol. 2005;67:2–11.

    Article  CAS  PubMed  Google Scholar 

  52. Pawlinski R, Mackman N. Tissue factor, coagulation proteases, and protease-activated receptors in endotoxemia and sepsis. Crit Care Med. 2004;32:S293–7.

    Article  CAS  PubMed  Google Scholar 

  53. Molino M, Raghunath PN, Kuo A, Ahuya M, Hoxie JA, Brass LF, Barnathan ES. Differential expression of functional protease-activated receptor-2 (PAR-2) in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1998;18:825–32.

    Article  CAS  PubMed  Google Scholar 

  54. Sabri A, Short J, Guo J, Steinberg SF. Protease-activated receptor-1 mediated DNA synthesis in cardiac fibroblasts is via epidermal growth factor receptor transactivation: distinct PAR-1 signaling pathways in cardiac fibroblasts and cardiomyocytes. Circ Res. 2002;91:532–9.

    Article  CAS  PubMed  Google Scholar 

  55. Mirza H, Yatsula V, Bahou WF. The proteinase activated receptor-2 (PAR-2) mediates mitogenic responses in human vascular endothelial cells. J Clin Invest. 1996;97:1705–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Colognato R, Slupsky JR, Jendrach M, Burysek L, Syrovets T, Simmet T. Differential expression and regulation of the protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells. Blood. 2003;102:2645–52.

    Article  CAS  PubMed  Google Scholar 

  57. Griffin CT, Srinivasan Y, Zheng YW, Huang W, Coughlin SR. A role for thrombin receptor signaling in endothelial cells during embryonic development. Science. 2001;293:1666–70.

    Article  CAS  PubMed  Google Scholar 

  58. Darrow AL, Fung-Leung WP, Ye RD, Santulli RJ, Cheung WM, Derian CK, Burns CL, Damiano BP, Zhou L, Keenan CM, Peterson PA, Andrade-Gordon P. Biological consequences of thrombin receptor deficiency in mice. Thromb Haemost. 1996;76:860–6.

    CAS  PubMed  Google Scholar 

  59. Damiano BP, Cheung WM, Santulli RJ, Fung-Leung WP, Ngo K, Ye RD, Darrow AL, Derian CK, de Garavilla L, Andrade-Gordon P. Cardiovascular responses mediated by protease-activated receptor-2 (PAR-2) and thrombin receptor (PAR-1) are distinguished in mice deficient in PAR-2 and PAR-1. J Pharmacol Exp Ther. 1999;288:671–8.

    CAS  PubMed  Google Scholar 

  60. Ruf W, Disse J, Carneiro-Lobo TC, Yokota N, Schaffner F. Tissue factor and cell signalling in cancer progression and thrombosis. J Thromb Haemost. 2011;9 Suppl. 1:306–15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Uusitalo-Jarvinen H, Kurokawa T, Mueller BM, Andrads-Gordon P, Friedlander M, Ruf W. Role of protease activated receptor 1 and 2 signaling in hypoxia-induced angiogenesis. Arterioscler Thromb Vasc Biol. 2007;27:1456–62.

    Article  CAS  PubMed  Google Scholar 

  62. Belting M, Dorrell MI, Sandgren S, Aguilar E, Ahamed J, Dorfleutner A, Carmeliet P, Mueller BM, Friedlander M, Ruf W. Regulation of angiogenesis by tissue factor cytoplasmic domain signaling. Nat Med. 2004;10:502–9.

    Article  CAS  PubMed  Google Scholar 

  63. Reinhardt C, Bergentall M, Greiner TU, Schaffner F, Östergren-Lundén G, Petersen LC, Ruf W, Bäckhed F. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature. 2012;483:627–31.

    Article  CAS  PubMed  Google Scholar 

  64. Ruf W, Yokata N, Schaffner F. Tissue factor in cancer progression and angiogenesis. Thromb Res. 2010;125:S36–8.

    Article  PubMed  Google Scholar 

  65. Niessen F, Schaffner F, Furlan-Freguia C, Pawlinski R, Bhattacharjee G, Chun J, Derian CK, Andrade-Gordon P, Rosen H, Ruf W. Dendritic cell PAR-1-S1P3 signalling couples coagulation and inflammation. Nature. 2008;452:654–8.

    Article  CAS  PubMed  Google Scholar 

  66. Antoniak S, Owens AP 3rd, Baunacke M, Williams JC, Lee RD, Weithäuser A, Sheridan PA, Malz R, Luyendyk JP, Esserman DA, Trejo J, Kirchhofer D, Blaxall BC, Pawlinski R, Back MA, Rauch U, Mackman N. PAR-1 contributes to the innate immune response during viral infection. J Clin Invest. 2013;123:1310–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Emilsson K, Wahlestedt C, Sun MK, Nystedt S, Owman C, Sundelin J. Vascular effects of proteinase-activated receptor 2 agonist peptide. J Vasc Res. 1997;34:267–72.

    Article  CAS  PubMed  Google Scholar 

  68. Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D, Pham TH, Wong JS, Pappu R, Coughlin SR. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest. 2009;119:1871–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Kaneider NC, Leger AJ, Agarwal A, Nguyen N, Perides G, Derian C, Covic L, Kuliopulos A. ‘Role reversal’ for the receptor PAR1 in sepsis-induced vascular damage. Nat Immunol. 2007;8:1303–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. O’Brien PJ, Prevost N, Molino M, Hollinger MK, Woolkalis MJ, Woulfe DS, Brass LF. Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J Biol Chem. 2000;275:13502–9.

    Article  PubMed  Google Scholar 

  71. Madhusudhan T, Wang H, Straub BK, Gröne E, Zhou Q, Shazad K, Müller-Krebs S, Schwenger V, Gerlitz B, Grinnell BW, Griffin JH, Reiser J, Gröne HJ, Esmon CT, Nawroth PP, Isermann B. Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes. Blood. 2012;119:874–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Lin H, Trejo J. Transactivation of the PAR1-PAR2 heterodimer by thrombin elicits β-arrestin-mediated endosomal signaling. J Biol Chem. 2013;288:11203–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Hung DT, Wong YH, Vu TK, Coughlin SR. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem. 1992;267:20831–4.

    CAS  PubMed  Google Scholar 

  74. Offermanns S, Laugwitz KL, Spicher K, Schultz G. G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci U S A. 1994;91:504–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Barr AJ, Brass LF, Manning DR. Reconstitution of receptors and GTP-binding regulatory proteins (G proteins) in Sf9 cells. A direct evaluation of selectivity in receptor.G protein coupling. J Biol Chem. 1997;272:2223–9.

    Article  CAS  PubMed  Google Scholar 

  76. Klages B, Brandt U, Simon MI, Schultz G, Offermanns S. Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol. 1999;144:745–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Vouret-Craviari V, Boquet P, Pouysségur J, Van Obberghen-Schilling E. Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function. Mol Biol Cell. 1998;9:2639–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Offermanns S, Mancino V, Revel JP, Simon MI. Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency. Science. 1997;275:533–6.

    Article  CAS  PubMed  Google Scholar 

  79. Taylor SJ, Chae HZ, Rhee SG, Exton JH. Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature. 1991;350:516–8.

    Article  CAS  PubMed  Google Scholar 

  80. Stoyanov B, Volinia S, Hanck T, Rubio L, Loubtchenkow M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nürnberg B, et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science. 1995;269:690–3.

    Article  CAS  PubMed  Google Scholar 

  81. Clapham DE, Neer EJ. G protein beta gamma subunits. Annu Rev Pharmacol Toxicol. 1997;37:167–203.

    Article  CAS  PubMed  Google Scholar 

  82. Schuepbach RA, Feistritzer C, Fernández JA, Griffin JH, Riewald M. Protection of vascular barrier integrity by activated protein C in murine models depends on protease-activated receptor-1. Thromb Haemost. 2009;101:724–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Riewald M, Ruf W. Protease-activated receptor-1 signaling by activated protein C in cytokine-perturbed endothelial cells is distinct from thrombin signaling. J Biol Chem. 2005;280:19808–14.

    Article  CAS  PubMed  Google Scholar 

  84. Mosnier LO, Sinha RK, Burnier L, Bouwens EA, Griffin JH. Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46. Blood. 2012;120:5237–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell. 2005;120:303–13.

    Article  CAS  PubMed  Google Scholar 

  86. Austin KM, Covic L, Kuliopulos A. Matrix metalloproteases and PAR1 activation. Blood. 2013;121:431–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Riewald M, Petrovan RJ, Donner A, Mueller BM, Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science. 2002;296:1880–2.

    Article  CAS  PubMed  Google Scholar 

  88. Rothmeier AS, Ruf W. Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol. 2012;34:133–49.

    Article  CAS  PubMed  Google Scholar 

  89. Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evrard P, Müller M, Risau W, Edgington T, Collen D. Role of tissue factor in embryonic blood vessel development. Nature. 1996;383:73–5.

    Article  CAS  PubMed  Google Scholar 

  90. Toomey JR, Kratzer KE, Lasky NM, Stanton JJ, Broze GJ Jr. Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood. 1996;88:1583–7.

    CAS  PubMed  Google Scholar 

  91. Parry GC, Mackman N. Mouse embryogenesis requires the tissue factor extracellular domain but not the cytoplasmic domain. J Clin Invest. 2000;105:1547–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Bugge TH, Xiao Q, Kombrinck KW, Flick Holmbäck K, Danton MJ, Colbert MC, Witte DP, Fujikawa K, Davie EW, Degen JL. Fatal embryonic bleeding events in mice lacking tissue factor, the cell-associated initiator of blood coagulation. Proc Natl Acad Sci U S A. 1996;93:6258–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Zioncheck TF, Roy S, Vehar GA. The cytoplasmic domain of tissue factor is phosphorylated by a protein kinase C-dependent mechanism. J Biol Chem. 1992;267:3561–4.

    CAS  PubMed  Google Scholar 

  94. Ettelaie C, Elkeeb AM, Maraveyas A, Collier ME. P38α phosphorylates serine 258 within the cytoplasmic domain of tissue factor and prevents its incorporation into cell-derived microparticles. Biochim Biophys Acta. 2013;1833:613–21.

    Article  CAS  PubMed  Google Scholar 

  95. Melis E, Moons L, De Mol M, Herbert JM, Mackman N, Collen D, Carmeliet P, Dewerchin M. Targeted deletion of the cytosolic domain of tissue factor in mice does not affect development. Biochem Biophys Res Commun. 2001;286:580–6.

    Article  CAS  PubMed  Google Scholar 

  96. Dewerchin M, Liang Z, Moons L, Carmeliet P, Castellino FJ, Collen D, Rosen ED. Blood coagulation factor X deficiency causes partial embryonic lethality and fatal neonatal bleeding in mice. Thromb Haemost. 2000;83:185–90.

    CAS  PubMed  Google Scholar 

  97. Rosen ED, Chan JC, Idusogie E, Clotman F, Vlasuk G, Luther T, Jalbert LR, Albrecht S, Zhong L, Lissens A, Schoonjans L, Moons L, Collen D, Castellino FJ, Carmeliet P. Mice lacking factor VII develop normally but suffer fatal perinatal bleeding. Nature. 1997;390:290–4.

    Article  CAS  PubMed  Google Scholar 

  98. Chan JCY, Carmeliet P, Moons L, Roosen ED, Hunang Z-F, Broze GJ Jr, Collen D, Castellino FJ. Factor VII deficiency rescues the intrauterine lethality in mice associated with a tissue factor pathway inhibitor deficit. J Clin Invest. 1999;103:475–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Cui J, O’Shea KS, Purkayastha A, Saunders TL, Ginsburg D. Fatal hemorrhage and incomplete block to embryogenesis in mice lacking coagulation factor V. Nature. 1996;384:66–8.

    Article  CAS  PubMed  Google Scholar 

  100. Sun WY, Witte DP, Degen JL, Colbert MC, Burkart MC, Holmbäck K, Xiao Q, Bugge TH, Degen SJ. Prothrombin deficiency results in embryonic and neonatal lethality in mice. Proc Natl Acad Sci U S A. 1998;95:7597–602.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Suh TT, Holmbäck K, Jensen NJ, Daugherty CC, Small K, Simon DI, Potter S, Degen JL. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev. 1995;9:2020–33.

    Article  CAS  PubMed  Google Scholar 

  102. Shivdasani RA, Orkin SH. Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci U S A. 1995;92:8690–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Connolly AJ, Ishihara H, Kahn ML, Farese RV Jr, Coughlin SR. Role of the thrombin receptor in development and evidence for a second receptor. Nature. 1996;381:516–9.

    Article  CAS  PubMed  Google Scholar 

  104. Camerer E, Duong DN, Hamilton JR, Coughlin SR. Combined deficiency of protease-activated receptor-4 and fibrinogen recapitulates the hemostatic defect but not the embryonic lethality of prothrombin deficiency. Blood. 2004;103:152–4.

    Article  CAS  PubMed  Google Scholar 

  105. Camerer E, Barker A, Duong DN, Ganesan R, Kataoka H, Cornelissen I, Darragh MR, Hussain A, Zheng Y-W, Srinivasan Y, Brown C, Xu S-M, Regard JB, Lin C-Y, Craik CS, Kirchhofer D, Coughlin SR. Local protease signaling contributes to neural tube closure in the mouse embryo. Dev Cell. 2010;18:25–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Broze GJ Jr. The rediscovery and isolation of TFPI. J Thromb Haemost. 2003;1:1671–5.

    Article  CAS  PubMed  Google Scholar 

  107. Ahamed J, Belting M, Ruf W. Regulation of tissue factor-induced signaling by endogenous and recombinant tissue factor pathway inhibitor 1. Blood. 2005;105:2384–91.

    Article  CAS  PubMed  Google Scholar 

  108. Higuchi DA, Wun TC, Likert KM, Broze GJ Jr. The effect of leukocyte elastase on tissue factor pathway inhibitor. Blood. 1992;79:1712–9.

    CAS  PubMed  Google Scholar 

  109. Butenas S, Amblo-Krudysz J, Mann KG. Posttranslational modifications of tissue factor. Front Biosci. 2012;4:381–91.

    Article  Google Scholar 

  110. Rehemtulla A, Ruf W, Edgington TS. The integrity of the cysteine 186-cysteine 209 bond of the second disulfide loop of tissue factor is required for binding of factor VII. J Biol Chem. 1991;266:10294–9.

    CAS  PubMed  Google Scholar 

  111. Ahamed J, Versteeg HH, Kerver M, Chen VM, Mueller BM, Hogg PJ, Ruf W. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci U S A. 2006;103:13932–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Reinhardt C, von Brühl ML, Manukyan D, Grahl L, Lorenz M, Altmann B, Dlugai S, Hess S, Konrad I, Orschiedt L, Mackman N, Ruddock L, Massberg S, Engelmann B. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. J Clin Invest. 2008;118:1110–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Liang HP, Brophy TM, Hogg PJ. Redox properties of the tissue factor Cys186-Cys209 disulfide bond. Biochem J. 2011;437:455–60.

    Article  CAS  PubMed  Google Scholar 

  114. Dorfleutner A, Hintermann E, Tarui T, Takada Y, Ruf W. Cross-talk of integrin alpha3beta1 and tissue factor in cell migration. Mol Biol Cell. 2004;15:4416–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Versteeg HH, Schaffner F, Kerver M, Petersen HH, Ahamed J, Felding-Habermann B, Takada Y, Mueller BM, Ruf W. Inhibition of tissue factor signaling suppresses tumor growth. Blood. 2008;111:190–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. van den Berg YW, van den Hengel LG, Myers HR, Ayachi O, Jordanova E, Ruf W, Spek CA, Reitsma PH, Bogdanov VY, Versteeg HH. Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proc Natl Acad Sci U S A. 2009;106:19497–502.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Ahamed J, Ruf W. Protease-activated receptor 2-dependent phosphorylation of the tissue factor cytoplasmic domain. J Biol Chem. 2004;279:23038–44.

    Article  CAS  PubMed  Google Scholar 

  118. Dorfleutner A, Ruf W. Regulation of tissue factor cytoplasmic domain phosphorylation by palmitoylation. Blood. 2003;102:3998–4005.

    Article  CAS  PubMed  Google Scholar 

  119. Caunt M, Huang YQ, Brooks PC, Karpatkin S. Thrombin induces neoangiogenesis in the chick chorioallantoic membrane. J Thromb Haemost. 2003;1:2097–102.

    Article  CAS  PubMed  Google Scholar 

  120. Haralabopoulos GC, Grant DS, Kleinman HK, Maragoudakis ME. Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Am J Physiol. 1997;273:C239–45.

    CAS  PubMed  Google Scholar 

  121. Minami T, Sugiyama A, Wu SQ, Abid R, Kodama T, Arid WC. Thrombin and phenotypic modulation of the endothelium. Arterioscler Thromb Vasc Biol. 2004;24:41–53.

    Article  CAS  PubMed  Google Scholar 

  122. McLaughlin JN, Shen L, Holinstat M, Brooks JD, Dibenedetto E, Hamm HE. Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1. J Biol Chem. 2005;280:25048–59.

    Article  CAS  PubMed  Google Scholar 

  123. Zania P, Papaconstantinou M, Flordellis CS, Maragoudakis ME, Tsopanoglou NE. Thrombin mediates mitogenesis and survival of human endothelial cells through distinct mechanisms. Am J Physiol Cell Physiol. 2008;294:C1215–26.

    Article  CAS  PubMed  Google Scholar 

  124. Tsopanoglou NE, Maragoudakis ME. On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J Biol Chem. 1999;274:23969–76.

    Article  CAS  PubMed  Google Scholar 

  125. Caunt M, Hu L, Tang T, Brooks PC, Ibrahim S, Karpatkin S. Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis. Cancer Res. 2006;66:4125–32.

    Article  CAS  PubMed  Google Scholar 

  126. Smedja DM, Bièche I, Uzan G, Bompais H, Muller L, Boisson-Vidal C, Vidaud M, Aiach M, Gaussem P. PAR-1 activation on human late endothelial-progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol. 2005;25:2321–7.

    Article  CAS  Google Scholar 

  127. Naldini A, Carney DH, Pucci A, Pasquali A, Carraro F. Thrombin regulates the expression of proangiogenic cytokines via proteolytic activation of protease-activated receptor-1. Gen Pharmacol. 2000;35:255–9.

    Article  CAS  PubMed  Google Scholar 

  128. Tsopanoglou NE, Andriopoulou P, Maragoudakis ME. On the mechanism of thrombin-induced angiogenesis: involvement of alphavbeta3-integrin. Am J Physiol Cell Physiol. 2002;283:C1501–10.

    Article  CAS  PubMed  Google Scholar 

  129. Arisato T, Sarker KP, Kawahara K, Nakata M, Hashiguchi T, Osame M, Kitajima I, Maruyama I. The agonist of the protease-activated receptor-1 (PAR) but not PAR3 mimics thrombin-induced vascular endothelial growth factor release in human smooth muscle cells. Cell Mol Life Sci. 2003;60:1716–24.

    Article  CAS  PubMed  Google Scholar 

  130. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor. Mol Cell Biol. 1996;16:4604–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Görlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U, Brandes RP, Kietzmann T, Busse R. Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: role of the p22(phox)-containing NADPH oxidase. Circ Res. 2001;89:47–54.

    Article  PubMed  Google Scholar 

  132. BelAiba RS, Djordjevic T, Bonello S, Flügel D, Hess J, Kietzmann T, Görlach A. Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biol Chem. 2004;385:249–57.

    Article  CAS  PubMed  Google Scholar 

  133. Milia AF, Salis MB, Stacca T, Pinna A, Madeddu P, Trevisani M, Geppetti P, Emanueli C. Protease-activated receptor-2 stimulates angiogenesis and accelerates hemodynamic recovery in a mouse model of hindlimb ischemia. Circ Res. 2002;91:346–52.

    Article  CAS  PubMed  Google Scholar 

  134. Arderiu G, Peña E, Aledo R, Badimon L. Tissue factor-Akt signaling triggers microvessel formation. J Thromb Haemost. 2012;10:1895–905.

    Article  CAS  PubMed  Google Scholar 

  135. Mirza H, Yatsula V, Bahou WF. The proteinase activated receptor-2 (PAR-2) mediates mitogenic responses in human vascular endothelial cells. J Clin Invest. 1996;97:1705–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Arderiu G, Peña E, Aledo R, Juan-Babot O, Badimon L. Tissue factor regulates microvessel formation and stabilization by induction of chemokine (C-C motif) ligand 2 expression. Arterioscler Thromb Vasc Biol. 2011;31:2607–15.

    Article  CAS  PubMed  Google Scholar 

  137. Zhu T, Sennlaub F, Beauchamp MH, Fan L, Joyal JS, Checchin D, Nim S, Lachapelle P, Sirinyan M, Hou X, Bossolasco M, Rivard GE, Heveker N, Chemtomb S. Proangiogenic effects of protease-activated receptor 2 are tumor necrosis factor-alpha and consecutively Tie2 dependent. Arterioscler Thromb Vasc Biol. 2006;26:744–50.

    Article  CAS  PubMed  Google Scholar 

  138. Versteeg HH, Borensztain KS, Kerver ME, Ruf W, Reitsma PH, Spek CA, Peppelenbosch MP. TF:VIIa-specific activation on CREB upregulates proapoptotic proteins via protease-activated receptor-2. J Thromb Haemost. 2008;6:1550–7.

    Article  CAS  PubMed  Google Scholar 

  139. Loposata M, Dovnarsky DK, Shin HS. Thrombin-induced gap formation in confluent endothelial cell monolayers in vitro. Blood. 1983;62:549–56.

    Google Scholar 

  140. Ku DD, Dai J. Expression of thrombin receptors in human atherosclerotic coronary arteries leads to an exaggerated vasoconstrictory response in vitro. J Cardiovasc Pharmacol. 1997;30:649–57.

    Article  CAS  PubMed  Google Scholar 

  141. Eto M, Barandiér C, Rathgeb L, Kozai T, Joch H, Yang Z, Lüscher TF. Thrombin supresses endothelial nitric oxide synthase and upregulates endothelin-converting enzyme-1 expression by distinct pathways: role of Rho/ROCK and mitogen-activated protein kinase. Circ Res. 2001;89:583–90.

    Article  CAS  PubMed  Google Scholar 

  142. Mizuno O, Kobayashi S, Hirano K, Nishimura J, Kubo C, Kanaide H. Stimulus-specific alteration of the relationship between cytosolic Ca(2+) transients and nitric oxide production in endothelial cells in vivo. Br J Pharmacol. 2000;130:1140–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Ming XF, Viswambharan H, Barandier C, Ruffieux J, Kaibuchi K, Rusconi S, Yang Z. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol. 2002;22:8467–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Robin J, Kharbanda R, McLean P, Campbell R, Vallance P. Protease-activated receptor 2-mediated vasodilatation in humans in vivo: role of nitric oxide and prostanoids. Circulation. 2003;107:954–9.

    Article  CAS  PubMed  Google Scholar 

  145. Carmeliet P. Biomedicine. Clotting factors build blood vessels. Science. 2001;293:1602–4.

    Article  CAS  PubMed  Google Scholar 

  146. Julovi SM, Xue M, Dervish S, Sambrook PN, March L, Jackson CJ. Protease activated receptor-2 mediates activated protein C-induced cutaneous wound healing via inhibition of p38. Am J Pathol. 2011;179:2233–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Xue M, Campbell D, Sambrook PN, Fukudome K, Jackson CJ. EndotheliaL protein C receptor and protease-activated receptor-1 mediate induction of wound-healing phenotype in human keratinocytes by activated protein C. J Invest Dermatol. 2005;125:1279–85.

    Article  CAS  PubMed  Google Scholar 

  148. Strukova SM, Dugina TN, Christov IV, Lange M, Markvicheva EA, Kuptsova S, Zubov VP, Glusa E. Immobilized thrombin receptor agonist peptide accelerates wound healing in mice. Clin Appl Thromb Hemost. 2001;7:325–9.

    Article  CAS  PubMed  Google Scholar 

  149. Borensztajn K, Stiekema J, Nijmeijer S, Reitsma PH, Peppelenbosch MP, Spek CA. Factor Xa stimulates proinflammatory and profibrotic responses in fibroblasts via protease-activated receptor-2 activation. Am J Pathol. 2008;172:309–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Jackson CJ, Xue M, Thompson P, Davey RA, Whitmont K, Smith S, Buisson-Legendre N, Sztynda T, Furphy LJ, Cooper A, Sambrook P, March L. Activated protein C prevents inflammation yet stimulates angiogenesis to promote cutaneous wound healing. Wound Repair Regen. 2005;13:284–94.

    Article  PubMed  Google Scholar 

  151. Somasundaram P, Ren G, Nagar H, Kraemer D, Mendoza L, Michael LH, Caughey GH, Entman ML, Frangogiannis NG. Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarcts. J Pathol. 2005;205:102–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Antoniak S, Rojas M, Spring D, Bullard TA, Verrier ED, Blaxall BC, Mackman N, Pawlinski R. Protease-activated receptor 2 deficiency reduces cardiac ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol. 2010;30:2136–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Howell DC, Johns RH, Lasky JA, Shan B, Scotton CJ, Laurent GJ, Chambers RC. Absence of proteinase-activated receptor-1 signaling affords protection from bleomycin-induced lung inflammation and fibrosis. Am J Pathol. 2005;166:1353–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Gaca MD, Zhou X, Benyon RC. Regulation of hepatic stellate cell proliferation and collagen synthesis by proteinase-activated receptors. J Hepatol. 2002;36:362–9.

    Article  CAS  PubMed  Google Scholar 

  155. Masamune A, Kikuta K, Satoh M, Suzuki N, Shimosegawa T. Protease-activated receptor-2-mediated proliferation and collagen production of rat pancreatic stellate cells. J Pharmacol Exp Ther. 2005;312:651–8.

    Article  CAS  PubMed  Google Scholar 

  156. Sabri A, Short J, Guo J, Steinberg SF. Protease-activated receptor-1-mediated DNA synthesis in cardiac fibroblasts is via epidermal growth factor receptor transactivation: distinct PAR-1 signaling pathways in cardiac fibroblasts and cardiomyocytes. Circ Res. 2002;91:532–9.

    Article  CAS  PubMed  Google Scholar 

  157. ten Cate H, Falanga A. Overview of the postulated mechanisms linking cancer and thrombosis. Pathophysiol Haemost Thromb. 2008;36:122–30.

    Article  PubMed  CAS  Google Scholar 

  158. Mueller BM, Ruf W. Requirement for binding of catalytically active factor VIIa in tissue factor-dependent experimental metastasis. J Clin Invest. 1998;101:1372–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. Bromberg ME, Bailly MA, Konigsberg WH. Role of protease-activated receptor 1 in tumor metastasis promoted by tissue factor. Thromb Haemost. 2001;86:1210–4.

    CAS  PubMed  Google Scholar 

  160. Yin YJ, Salah Z, Maoz M, Even Ram SC, Ochayon S, Neufeld G, Katzav S, Bar-Shavit R. Oncogenic transformation induces tumor angiogenesis: a role for PAR1 activation. FASEB J. 2003;17:163–74.

    Article  CAS  PubMed  Google Scholar 

  161. Even-Ram SC, Maoz M, Pokroy E, Reich R, Katz BZ, Gutwein P, Altevogt P, Bar-Shavit R. Tumor cell invasion is promoted by activation of protease-activated receptor-1 in cooperation with alpha vbeta 5 integrin. J Biol Chem. 2001;276:10952–62.

    Article  CAS  PubMed  Google Scholar 

  162. Jiang X, Bailly MA, Panetti TS, Cappello M, Konigsberg WH, Bromberg ME. Formation of tissue factor-factor VIIa-factor Xa complex promotes cellular signaling and migration of human breast cancer cells. J Thromb Haemost. 2004;2:93–101.

    Article  CAS  PubMed  Google Scholar 

  163. Kaushal V, Kohli M, Dennis RA, Siegel ER, Chiles WW, Mukunyadzi P. Thrombin receptor expression is upregulated in prostate cancer. Prostate. 2006;66:273–82.

    Article  CAS  PubMed  Google Scholar 

  164. Yin YJ, Salah Z, Grisaru-Granovsky S, Cohen I, Even Ram SC, Maoz M, Uziely B, Peretz T, Bar-Shavit R. Human protease-activated receptor 1 expression in malignant epithelia: a role in invasiveness. Arterioscler Thromb Vasc Biol. 2003;23:940–4.

    Article  CAS  PubMed  Google Scholar 

  165. Hernández NA, Correa E, Avila EP, Vela TA, Pérez VM. PAR1 is selectively over expressed in high grade breast cancer patients: a cohort study. J Transl Med. 2009;7:47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  166. Zhu L, Wang X, Wu J, Mao D, Xu Z, He Z, Yu A. Cooperation of protease-activated receptor 1 and integrin αvβ5 in thrombin-mediated lung cancer cell invasion. Oncol Rep. 2012;28:553–60.

    CAS  PubMed  Google Scholar 

  167. Fujimoto D, Hirono Y, Goi T, Katayama K, Matsukawa S, Yamaguchi A. The activation of proteinase-activated receptor-1 (PAR1) mediates gastric cancer cell proliferation and invasion. BMC Cancer. 2010;10:433.

    Article  CAS  Google Scholar 

  168. Darmoul D, Gratio V, Devaud H, Peiretti F, Laburthe M. Activation of proteinase-activated receptor 1 promotes human colon cancer cell proliferation through epidermal growth factor receptor transactivation. Mol Cancer Res. 2004;2:514–22.

    CAS  PubMed  Google Scholar 

  169. Depasquale I, Thompson WD. Prognosis in human melanoma: PAR-1 expression is superior to other coagulation components and VEGF. Histopathology. 2008;52:500–9.

    Article  CAS  PubMed  Google Scholar 

  170. Grisaru-Granovsky S, Salah Z, Maoz M, Pruss D, Beller U, Bar-Shavit R. Differential expression of protease-activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples. Int J Cancer. 2005;113:372–8.

    Article  CAS  PubMed  Google Scholar 

  171. Arora P, Cuevas BD, Russo A, Johnson GL, Trejo J. Persistent transactivation of EGFR and ErbB2/HER2 by protease-activated receptor-1 promotes breast carcinoma cell invasion. Oncogene. 2008;27:4434–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  172. Yang E, Boire A, Agerwal A, Nguyen N, O’Callaghan K, Tu P, Kuliopulos A, Covic L. Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Res. 2009;69:6223–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Albrektsen T, Sørensen BB, Hjortø GM, Fleckner J, Rao LV, Petersen LC. Transcriptional program induced by factor VIIa-tissue factor, PAR1 and PAR2 in MDA-MB-231 cells. J Thromb Haemost. 2007;5:1588–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  174. Petersen LC. Microarray studies of factor VIIa-activated cancer cells. Thromb Res. 2008;122:S11–3.

    Article  CAS  PubMed  Google Scholar 

  175. Liu J, Schuff-Werner P, Steiner M. Thrombin/thrombin receptor (PAR-1)-mediated induction of IL-8 and VEGF expression in prostate cancer cells. Biochem Biophys Res Commun. 2006;343:183–9.

    Article  CAS  PubMed  Google Scholar 

  176. Liu Y, Mueller BM. Protease-activated receptor-2 regulates vascular endothelial growth factor expression in MDA-MB-231 cells via MAPK pathways. Biochem Biophys Res Commun. 2006;344:1263–70.

    Article  CAS  PubMed  Google Scholar 

  177. Hjorte GM, Petersen LC, Albrektsen T, Sorensen BB, Norby PL, Mandal SK, Pendurthi UR, Rao LV. Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood. 2004;103:3029–37.

    Article  CAS  Google Scholar 

  178. Jiang X, Bailly MA, Panetti TS, Cappello M, Konigsberg WH, Bromberg ME. Formation of tissue factor-factor VIIa-factor Xa complex promotes cellular signaling and migration of human breast cancer cells. J Thromb Haemost. 2004;2:93–101.

    Article  CAS  PubMed  Google Scholar 

  179. Morris DR, Ding Y, Ricks TK, Gullapalli A, Wolfe BL, Trejo J. Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Res. 2006;66:307–14.

    Article  CAS  PubMed  Google Scholar 

  180. Jiang X, Zhu S, Panetti TS, Bromberg ME. Formation of tissue factor-factor VIIa-factor Xa complex induces activation of the mTOR pathway which regulates migration of human breast cancer cells. Thromb Haemost. 2008;100:127 –33.

    Google Scholar 

  181. Schaffner F, Versteeg HH, Schillert A, Yokota N, Petersen LC, Mueller BM, Ruf W. Cooperation of tissue factor cytoplasmic domain and PAR2 signaling in breast cancer development. Blood. 2010;116:6106–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  182. Rydén L, Grabau D, Schaffner F, Jönsson PE, Ruf W, Belting M. Evidence for tissue factor phosphorylation and its correlation with protease-activated receptor expression and the prognosis of primary breast cancer. Int J Cancer. 2010;126:2330–40.

    PubMed Central  PubMed  Google Scholar 

  183. Antoniak S, Owens AP 3rd, Baunacke M, Williams JC, Lee RD, Weithäuser A, Sheridan PA, Malz R, Luyendyk JP, Esserman DA, Trejo J, Kirchhofer D, Blaxall BC, Pawlinski R, Beck MA, Rauch U, Mackman N. PAR-1 contributes to the innate immune response during viral infection. J Clin Invest. 2013;123:1310–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  184. Shrivastava S, Ma L, Tham el-L, H McVey J, Chen D, Dorling A. Protease-activated receptor-2 signalling by tissue factor on dendritic cells suppresses antigen-specific CD4+ T-cell priming. Immunology. 2013;139:219–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Chung WO, Hansen SR, Rao D, Dale BA. Protease-activated receptor signaling increases epithelial antimicrobial peptide expression. J Immunol. 2004;173:5165–70.

    Article  CAS  PubMed  Google Scholar 

  186. Rallabhandi P, Nhu QM, Toshchakov VY, Piao W, Medvedev AE, Hollenberg MD, Fasano A, Vogel SN. Analysis of proteinase-activated receptor 2 and TLR4 signal transduction: a novel paradigm for receptor cooperativity. J Biol Chem. 2008;283:24314–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Badeanlou L, Furlan-Freguia C, Yang G, Ruf W, Samad F. Tissue factor-protease-activated receptor 2 signaling promotes diet-induced obesity and adipose inflammation. Nat Med. 2011;17:1490–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Reinhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reinhardt, C., Manukyan, D., Ruf, W. (2015). The Role of Coagulation Factor Signaling in Angiogenesis and Vascular Remodeling. In: Schmidt, M., Liebner, S. (eds) Endothelial Signaling in Development and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2907-8_10

Download citation

Publish with us

Policies and ethics