Skip to main content

Weaving Knowledge into Biological Pathways in a Collaborative Manner

  • Protocol
Book cover Computational Systems Toxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 883 Accesses

Abstract

Toxicity pathway modeling is an effective approach to understanding how biological systems function under chemical perturbations. Many efforts have been made to construct pathways by data-driven or literature-based approaches to elucidate the mechanisms of action of toxicity. In this chapter, we explain how to build a literature-based pathway map in a collaborative manner using in silico platforms such as CellDesigner to draw pathways and networks, Payao as the curation platform, iPathways+ as the publishing platform, and Garuda to integrate curated pathways while adopting model-descriptive standards such as Systems Biology Markup Language as a file format and Systems Biology Graphical Notation as the graphical representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krewski D, Acosta D Jr, Andersen M et al (2010) Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B Crit Rev 13:51–138. doi:10.1080/10937404.2010.483176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kleensang A, Maertens A, Rosenberg M et al (2014) t4 workshop report: Pathways of toxicity. ALTEX 31:53–61. doi:10.14573/altex.1309261

    Article  PubMed Central  PubMed  Google Scholar 

  3. Howe D, Costanzo M, Fey P et al (2008) Big data: the future of biocuration. Nature 455:47–50. doi:10.1038/455047a

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. sbv IMPROVER project team, Ansari S, Binder J et al (2013) On crowd-verification of biological networks. Bioinform Biol Insights 7:307–325. doi:10.4137/BBI.S12932

    Google Scholar 

  5. Le Novère N, Hucka M, Mi H et al (2009) The systems biology graphical notation. Nat Biotechnol 27:735–741. doi:10.1038/nbt1558

    Article  PubMed  Google Scholar 

  6. Mi H, Lazareva-Ulitsky B, Loo R et al (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33:D284–D288. doi:10.1093/nar/gki078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mi H, Guo N, Kejariwal A et al (2007) PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res 35:D247–D252. doi:10.1093/nar/gkl869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Croft D, Mundo AF, Haw R et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477. doi:10.1093/nar/gkt1102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531. doi:10.1093/bioinformatics/btg015

    Article  CAS  PubMed  Google Scholar 

  10. Lloyd CM, Halstead MD, Nielsen PF (2004) CellML: its future, present and past. Prog Biophys Mol Biol 85:433–450. doi:10.1016/j.pbiomolbio.2004.01.004

    Article  CAS  PubMed  Google Scholar 

  11. Demir E, Cary MP, Paley S et al (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28:935–942. doi:10.1038/nbt.1666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Stromback L, Lambrix P (2005) Representations of molecular pathways: an evaluation of SBML, PSI MI and BioPAX. Bioinformatics 21:4401–4407. doi:10.1093/bioinformatics/bti718

    Article  CAS  PubMed  Google Scholar 

  13. Slater T (2014) Recent advances in modeling languages for pathway maps and computable biological networks. Drug Discov Today 19:193–198. doi:10.1016/j.drudis.2013.12.011

    Article  PubMed  Google Scholar 

  14. Matsuoka Y, Matsumae H, Katoh M et al (2013) A comprehensive map of the influenza A virus replication cycle. BMC Syst Biol 7:97. doi:10.1186/1752-0509-7-97

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kaizu K, Ghosh S, Matsuoka Y et al (2010) A comprehensive molecular interaction map of the budding yeast cell cycle. Mol Syst Biol 6:415. doi:10.1038/msb.2010.73

    Article  PubMed Central  PubMed  Google Scholar 

  16. Caron E, Ghosh S, Matsuoka Y et al (2010) A comprehensive map of the mTOR signaling network. Mol Syst Biol 6:453. doi:10.1038/msb.2010.108

    Article  PubMed Central  PubMed  Google Scholar 

  17. Oda K, Kitano H (2006) A comprehensive map of the toll-like receptor signaling network. Mol Syst Biol 2. doi:10.1038/msb4100057

  18. Oda K, Matsuoka Y, Funahashi A et al (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1:2005.0010. doi:10.1038/msb4100014

    Article  PubMed Central  PubMed  Google Scholar 

  19. Kitano H, Oda K, Kimura T et al (2004) Metabolic syndrome and robustness tradeoffs. Diabetes 53(Suppl 3):S6–S15

    Article  CAS  PubMed  Google Scholar 

  20. Calzone L, Gelay A, Zinovyev A et al (2008) A comprehensive modular map of molecular interactions in RB/E2F pathway. Mol Syst Biol 4:173. doi:10.1038/msb.2008.7

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mi H, Thomas P (2009) PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol Biol 563:123–140. doi:10.1007/978-1-60761-175-2_7

    Article  CAS  PubMed  Google Scholar 

  23. Joshi-Tope G, Gillespie M, Vastrik I et al (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33:D428–D432. doi:10.1093/nar/gki072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Thiele I, Swainston N, Fleming RM et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31:419–425. doi:10.1038/nbt.2488

    Article  CAS  PubMed  Google Scholar 

  25. Pico AR, Kelder T, van Iersel MP et al (2008) WikiPathways: pathway editing for the people. PLoS Biol 6, e184. doi:10.1371/journal.pbio.0060184

    Article  PubMed Central  PubMed  Google Scholar 

  26. Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucleic Acids Res 34:D504–D506. doi:10.1093/nar/gkj126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Bockmann B, Heiden K (2013) PathGuide—model-based generation of guideline-compliant pathways for the use in different hospital information systems. Stud Health Technol Inform 192:1089

    PubMed  Google Scholar 

  28. Viswanathan GA, Nudelman G, Patil S et al (2007) BioPP: a tool for web-publication of biological networks. BMC Bioinformatics 8:168. doi:10.1186/1471-2105-8-168

    Article  PubMed Central  PubMed  Google Scholar 

  29. Matsuoka Y, Ghosh S, Kikuchi N et al (2010) Payao: a community platform for SBML pathway model curation. Bioinformatics (Oxford, England) 26:1381–1383. doi:10.1093/bioinformatics/btq143

    Article  CAS  Google Scholar 

  30. Kuperstein I, Cohen DP, Pook S et al (2013) NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps. BMC Syst Biol 7:100. doi:10.1186/1752-0509-7-100

    Article  PubMed Central  PubMed  Google Scholar 

  31. Bauer-Mehren A, Furlong LI, Sanz F (2009) Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol Syst Biol 5:290. doi:10.1038/msb.2009.47

    Article  PubMed Central  PubMed  Google Scholar 

  32. Mizuno S, Iijima R, Ogishima S et al (2012) AlzPathway: a comprehensive map of signaling pathways of Alzheimer’s disease. BMC Syst Biol 6:52. doi:10.1186/1752-0509-6-52

    Article  PubMed Central  PubMed  Google Scholar 

  33. Fujita KA, Ostaszewski M, Matsuoka Y et al (2014) Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol Neurobiol 49:88–102. doi:10.1007/s12035-013-8489-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kitano H, Ghosh S, Matsuoka Y (2011) Social engineering for virtual ‘big science’ in systems biology. Nat Chem Biol 7:323–326. doi:10.1038/nchembio.574

    Article  CAS  PubMed  Google Scholar 

  35. Funahashi A, Matsuoka Y, Jouraku A et al (2008) CellDesigner 3.5: a versatile modeling tool for biochemical networks. Proceedings of the IEEE 96, pp 1254–1265

    Google Scholar 

  36. Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32:D115–D119. doi:10.1093/nar/gkh131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Maglott D, Ostell J, Pruitt KD et al (2005) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 33:D54–D58. doi:10.1093/nar/gki031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kitano H (2003) A graphical notation for biochemical networks. BIOSILICO 1:169–176. doi:http://dx.doi.org/10.1016/S1478-5382(03)02380-1

  39. Kitano H, Funahashi A, Matsuoka Y et al (2005) Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 23:961–966. doi:10.1038/nbt1111

    Article  CAS  PubMed  Google Scholar 

  40. van Iersel MP, Villeger AC, Czauderna T et al (2012) Software support for SBGN maps: SBGN-ML and LibSBGN. Bioinformatics 28:2016–2021. doi:10.1093/bioinformatics/bts270

    Article  PubMed Central  PubMed  Google Scholar 

  41. Machne R, Finney A, Muller S et al (2006) The SBML ODE Solver Library: a native API for symbolic and fast numerical analysis of reaction networks. Bioinformatics 22:1406–1407. doi:10.1093/bioinformatics/btl086

    Article  CAS  PubMed  Google Scholar 

  42. Hoops S, Sahle S, Gauges R et al (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 22:3067–3074. doi:10.1093/bioinformatics/btl485

    Article  CAS  PubMed  Google Scholar 

  43. Keller R, Dorr A, Tabira A et al (2013) The systems biology simulation core algorithm. BMC Syst Biol 7:55. doi:10.1186/1752-0509-7-55

    Article  PubMed Central  PubMed  Google Scholar 

  44. Le Novere N, Bornstein B, Broicher A et al (2006) BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34:D689–D691. doi:10.1093/nar/gkj092

    Article  PubMed Central  PubMed  Google Scholar 

  45. Olivier BG, Snoep JL (2004) Web-based kinetic modelling using JWS Online. Bioinformatics 20:2143–2144. doi:10.1093/bioinformatics/bth200

    Article  CAS  PubMed  Google Scholar 

  46. Fujibuchi W, Goto S, Migimatsu H et al (1998) DBGET/LinkDB: an integrated database retrieval system. Pac Symp Biocomput 683–694. http://www.ncbi.nlm.nih.gov/pubmed/9697222

  47. Cherry JM, Adler C, Ball C et al (1998) SGD: Saccharomyces Genome Database. Nucleic Acids Res 26:73–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Fernandez JM, Hoffmann R, Valencia A (2007) iHOP web services. Nucleic Acids Res 35:W21–W26. doi:10.1093/nar/gkm298

    Article  PubMed Central  PubMed  Google Scholar 

  49. Huss JW III, Lindenbaum P, Martone M et al (2010) The Gene Wiki: community intelligence applied to human gene annotation. Nucleic Acids Res 38:D633–D639. doi:10.1093/nar/gkp760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Degtyarenko K, de Matos P, Ennis M et al (2008) ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 36:D344–D350. doi:10.1093/nar/gkm791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Caspi R, Altman T, Dreher K et al (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–D753. doi:10.1093/nar/gkr1014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Mi H, Muruganujan A, Demir E et al (2011) BioPAX support in Cell Designer. Bioinformatics 27:3437–3438. doi:10.1093/bioinformatics/btr586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Ghosh S, Matsuoka Y, Asai Y et al (2013) Toward an integrated software platform for systems pharmacology. Biopharm Drug Dispos 34:508–526. doi:10.1002/bdd.1875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Matsuoka Y, Funahashi A, Ghosh S et al (2014) Modeling and simulation using Cell Designer. Methods Mol Biol 1164:121–145. doi:10.1007/978-1-4939-0805-9_11

    Article  PubMed  Google Scholar 

  55. Hirschman L, Burns GA, Krallinger M et al (2012) Text mining for the biocuration workflow. Database 2012:bas020. doi:10.1093/database/bas020

    Article  PubMed Central  PubMed  Google Scholar 

  56. Le Novère N, Finney A, Hucka M et al (2005) Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol 23:1509–1515. doi:10.1038/nbt1156

    Article  PubMed  Google Scholar 

  57. Oda K, Kim JD, Ohta T et al (2008) New challenges for text mining: mapping between text and manually curated pathways. BMC Bioinformatics 9(Suppl 3):S5. doi:10.1186/1471-2105-9-S3-S5

    Article  PubMed Central  PubMed  Google Scholar 

  58. Ghosh S, Matsuoka Y, Asai Y et al (2013) Software platform for metabolic network reconstruction of Mycobacterium tuberculosis. In: Beste DJV, Kierzek AM, McFadden J (eds) Systems biology of tuberculosis. Springer, New York, pp 21–35. doi:10.1007/978-1-4614-4966-9_2

    Chapter  Google Scholar 

  59. Jasny B (2013) Realities of data sharing using the genome wars as case study—an historical perspective and commentary. EPJ Data Sci 2:1

    Article  Google Scholar 

  60. Meyer P, Alexopoulos LG, Bonk T et al (2011) Verification of systems biology research in the age of collaborative competition. Nat Biotechnol 29:811–815. doi:10.1038/nbt.1968

    Article  CAS  PubMed  Google Scholar 

  61. Friend SH, Norman TC (2013) Metcalfe’s law and the biology information commons. Nat Biotechnol 31:297–303. doi:10.1038/nbt.2555

    Article  CAS  PubMed  Google Scholar 

  62. Zengler K, Palsson BO (2012) A road map for the development of community systems (CoSy) biology. Nat Rev Microbiol 10:366–372. doi:10.1038/nrmicro2763

    CAS  PubMed  Google Scholar 

  63. Aral S, Walker D (2012) Identifying influential and susceptible members of social networks. Science 337:337–341. doi:10.1126/science.1215842

    Article  CAS  PubMed  Google Scholar 

  64. Bohon W, Robinson S, Arrowsmith R et al (2013) Building an effective social media strategy for science programs. Eos 94:237–238. doi:10.1002/2013EO270001

    Article  Google Scholar 

  65. Lakhani KR, Boudreau KJ, Loh PR et al (2013) Prize-based contests can provide solutions to computational biology problems. Nat Biotechnol 31:108–111. doi:10.1038/nbt.2495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Sheridan C (2011) Industry continues dabbling with open innovation models. Nat Biotechnol 29:1063–1065. doi:10.1038/nbt1211-1063a

    Article  CAS  PubMed  Google Scholar 

  67. Open to interpretation (2013). Nat Biotechnol 31: 661. doi:10.1038/nbt.2665

Download references

Acknowledgements

This work was supported, in part, by funding from the Genome Network Project of the Ministry of Education, Culture, Sports, Science and Technology, the New Energy and Industrial Technology Development Organization, the International Strategic Collaborative Research Program of the Japan Science and Technology Agency (JST), the Exploratory Research for Advanced Technology program of JST [to the Systems Biology Institute (SBI)], and a strategic cooperation partnership between the Luxembourg Centre for Systems Biomedicine and the SBI. Inspired by the sbv IMPROVER workshops.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Kitano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Matsuoka, Y., Fujita, K., Ghosh, S., Kitano, H. (2015). Weaving Knowledge into Biological Pathways in a Collaborative Manner. In: Hoeng, J., Peitsch, M. (eds) Computational Systems Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2778-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2778-4_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2777-7

  • Online ISBN: 978-1-4939-2778-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics