Skip to main content

In Vivo Imaging of Hedgehog Transport in Drosophila Epithelia

  • Protocol
Hedgehog Signaling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1322))

Abstract

The Hedgehog (Hh) signaling pathway is a regulator of patterning, cell migration and axon guidance during development as well as of homeostatic events in adult organs. It is highly conserved from Drosophila to humans. In many contexts during development, Hh appears to function as a morphogen; it spreads from producing cells to trigger concentration dependent responses in target cells, leading to their specification. During production, Hh undergoes two lipid modifications resulting in a highly hydrophobic molecule. The processes that create lipid-modified Hh for release from producing cells and that move it to target cells in a graded manner are complex. While most of the work done trying to explain Hh gradient formation is based on immunohistochemical studies in steady state, in vivo imaging in intact organisms is the finest technique to study gradient formation in real time. Both the wing imaginal disc epithelium and the adult abdominal epidermis of Drosophila are well suited for in vivo imaging. They allow us to observe the behavior of cells and fluorescently labeled proteins, without interfering with development. Here, we describe in vivo imaging methods for these two epithelia, which allowed us to study Hh transport along specialized cytoplasmic protrusions called cytonemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Briscoe J, Therond PP (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:416–429

    Article  PubMed  Google Scholar 

  2. Guerrero I, Kornberg TB (2014) Hedgehog and its circuitous journey from producing to target cells. Semin Cell Dev Biol 33C:52–62

    Article  Google Scholar 

  3. Gradilla AC, Guerrero I (2013) Hedgehog on the move: a precise spatial control of Hedgehog dispersion shapes the gradient. Curr Opin Genet Dev 23:363–373

    Article  CAS  PubMed  Google Scholar 

  4. Ingham PW, Nakano Y, Seger C (2011) Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 12:393–406

    Article  CAS  PubMed  Google Scholar 

  5. Porter JA, Young KE, Beachy PA (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274:255–259

    Article  CAS  PubMed  Google Scholar 

  6. Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP, Bixler SA, Ambrose CM, Garber EA, Mlatkowski K, Taylor FR, Wang EA, And Galdes A (1998) Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 273:14037–14045

    Article  CAS  PubMed  Google Scholar 

  7. Crick F (1970) Diffusion in embryogenesis. Nature 225:420–422

    Article  CAS  PubMed  Google Scholar 

  8. Entchev EV, Schwabedissen A, Gonzalez-Gaitan M (2000) Gradient formation of the TGF-beta homolog Dpp. Cell 103:981–991

    Article  CAS  PubMed  Google Scholar 

  9. Greco V, Hannus M, Eaton S (2001) Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106:633–645

    Article  CAS  PubMed  Google Scholar 

  10. Gross JC, Chaudhary V, Bartscherer K, Boutros M (2012) Active Wnt proteins are secreted on exosomes. Nat Cell Biol 14:1036–1045

    Article  CAS  PubMed  Google Scholar 

  11. Gradilla A-C, González E, Seijo I, Andrés G, Bischoff M, González-Mendez L, Sánchez V, Callejo A, Ibáñez C, Guerra M, Ortigão-Farias J-R, Sutherland J-D, González M, Barrio R, Falcón-Pérez J-M, Guerrero I (2014) Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun 5:5649. doi:10.1038/ncomms6649

    Article  CAS  PubMed  Google Scholar 

  12. Panakova D, Sprong H, Marois E, Thiele C, Eaton S (2005) Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435:58–65

    Article  CAS  PubMed  Google Scholar 

  13. Bischoff M, Gradilla AC, Seijo I, Andrés G, Rodríguez-Navas C, González-Méndez L, Guerrero I (2013) Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nat Cell Biol 15:1269–1281

    Article  CAS  PubMed  Google Scholar 

  14. Ramirez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97:599–607

    Article  CAS  PubMed  Google Scholar 

  15. Roy S, Hsiung F, Kornberg TB (2011) Specificity of Drosophila cytonemes for distinct signaling pathways. Science 332:354–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Garcia-Bellido A, Ripoll P, Morata G (1973) Developmental compartmentalisation of the wing disk of Drosophila. Nat New Biol 245:251–253

    Article  CAS  PubMed  Google Scholar 

  17. Tabata T, Kornberg TB (1994) Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 76:89–102

    Article  CAS  PubMed  Google Scholar 

  18. Mullor JL, Calleja M, Capdevila J, Guerrero I (1997) Hedgehog activity, independent of decapentaplegic, participates in wing disc patterning. Development 124:1227–1237

    CAS  PubMed  Google Scholar 

  19. Strigini M, Cohen SM (1997) A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124:4697–4705

    CAS  PubMed  Google Scholar 

  20. Capdevila J, Estrada MP, Sanchez-Herrero E, Guerrero I (1994) The Drosophila segment polarity gene patched interacts with decapentaplegic in wing development. EMBO J 13:71–82

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Chen Y, Struhl G (1996) Dual roles for patched in sequestering and transducing Hedgehog. Cell 87:553–563

    Article  CAS  PubMed  Google Scholar 

  22. Struhl G, Barbash DA, Lawrence PA (1997) Hedgehog organises the pattern and polarity of epidermal cells in the Drosophila abdomen. Development 124:2143–2154

    CAS  PubMed  Google Scholar 

  23. Kopp A, Muskavitch MA, Duncan I (1997) The roles of hedgehog and engrailed in patterning adult abdominal segments of Drosophila. Development 124:3703–3714

    CAS  PubMed  Google Scholar 

  24. Madhavan MM, Madhavan K (1980) Morphogenesis of the epidermis of adult abdomen of Drosophila. J Embryol Exp Morphol 60:1–31

    CAS  PubMed  Google Scholar 

  25. Kopp A, Duncan I (2002) Anteroposterior patterning in adult abdominal segments of Drosophila. Dev Biol 242:15–30

    Article  CAS  PubMed  Google Scholar 

  26. Bischoff M, Cseresnyes Z (2009) Cell rearrangements, cell divisions and cell death in a migrating epithelial sheet in the abdomen of Drosophila. Development 136:2403–2411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ashburner M, Roote J (2007). Maintenance of a Drosophila laboratory: general procedures. CSH Protoc 2007: pdb.ip35

    Google Scholar 

  28. Bainbridge SP, Bownes M (1981) Staging the metamorphosis of Drosophila melanogaster. J Embryol Exp Morphol 66:57–80

    CAS  PubMed  Google Scholar 

  29. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  30. Bilioni A, Sánchez-Hernández D, Callejo A, Gradilla AC, Ibáñez C, Mollica E, Carmen Rodríguez-Navas M, Simon E, Guerrero I (2013) Balancing Hedgehog, a retention and release equilibrium given by Dally, Ihog, Boi and shifted/DmWif. Dev Biol 376:198–212

    Article  CAS  PubMed  Google Scholar 

  31. Callejo A, Billioni A, Mollica E, Gorfinkiel N, Andrés G, Ibáñez C, Torroja C, Doglio L, Sierra J, Guerrero I (2011) Dispatched mediates Hedgehog basolateral release to form the long-range morphogenetic gradient in the Drosophila wing disk epithelium. Proc Natl Acad Sci U S A 108:12591–12598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to Carmen Ibáñez for technical assistance. We also thank the confocal microscopy facility of the CBMSO for skillful technical assistance. Work was supported by grant BFU2011-25987 from the Spanish MINECO and by an institutional grant to the CBMSO from the Fundación Areces to I.G. I.S. was financially supported by an FPI fellowship of the Spanish MINECO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isabel Guerrero or Marcus Bischoff .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Video 1

In vivo imaging of cytonemes in the abdominal epidermis. Cytonemes are visualized by Ihog-CFP expression in all P compartment cells. The histoblasts (hb) replace the larval epithelial cells (LEC) during morphogenesis. Along the compartment border, cytonemes point anteriorly (arrows). Movie begins at approx. 35 h after puparium formation. 150 s time interval between frames. Segment A2 shown. Anterior is to the left. (MOV 9107 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Seijo-Barandiarán, I., Guerrero, I., Bischoff, M. (2015). In Vivo Imaging of Hedgehog Transport in Drosophila Epithelia. In: Riobo, N. (eds) Hedgehog Signaling Protocols. Methods in Molecular Biology, vol 1322. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2772-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2772-2_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2771-5

  • Online ISBN: 978-1-4939-2772-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics