Skip to main content

Production of Homogeneous Recombinant RNA Using a tRNA Scaffold and Hammerhead Ribozymes

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1316))

Abstract

Bacterial overproduction of recombinant RNA using a tRNA scaffold yields large amounts of chimeric RNA. For structural and functional characterizations of the RNA it is often necessary to remove the scaffold. Here we describe an efficient and facile method to release the RNA of interest from the tRNA scaffold by selective cleavage using cis-acting hammerhead ribozymes. After cleavage, the RNA of interest is purified to homogeneity using standard chromatographic and electrophoretic methods. Up to 5 mg of highly pure end-product RNA can be obtained from a single liter of bacterial culture.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ponchon L, Dardel F (2011) Large scale expression and purification of recombinant RNA in Escherichia coli. Methods 54:267–273

    Article  CAS  PubMed  Google Scholar 

  2. Ponchon L, Beauvais G, Nonin-Lecomte S et al (2009) A generic protocol for the expression and purification of recombinant RNA in Escherichia coli using a tRNA scaffold. Nat Protoc 4:947–959

    Article  CAS  PubMed  Google Scholar 

  3. Ponchon L, Dardel F (2007) Recombinant RNA technology: the tRNA scaffold. Nat Methods 4:571–576

    Article  CAS  PubMed  Google Scholar 

  4. Liu YM, Stepanov VG, Strych U et al (2010) DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli. BMC Biotechnol 10:85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Price SR, Ito N, Oubridge C et al (1995) Crystallization of RNA-protein complexes. 1. Methods for the large-scale preparation of rna suitable for crystallographic studies. J Mol Biol 249:398–408

    Article  CAS  PubMed  Google Scholar 

  6. Forster AC, Symons RH (1987) Self-cleavage of plus and minus Rnas of a virusoid and a structural model for the active-sites. Cell 49:211–220

    Article  CAS  PubMed  Google Scholar 

  7. Nelissen FHT, Leunissen EHP, van de Laar L et al (2012) Fast production of homogeneous recombinant RNA-towards large-scale production of RNA. Nucleic Acids Res 40:e102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Flodell S, Petersen M, Girard F et al (2006) Solution structure of the apical stem-loop of the human hepatitis B virus encapsidation signal. Nucleic Acids Res 34:4449–4457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Nassal M (2008) Hepatitis B viruses: reverse transcription a different way. Virus Res 134:235–249

    Article  CAS  PubMed  Google Scholar 

  10. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  11. Srisawat C, Goldstein IJ, Engelke DR (2001) Sephadex-binding RNA ligands: rapid affinity purification of RNA from complex RNA mixtures. Nucleic Acids Res 29:e4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33:W577–W581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hampel A, Tritz R (1989) RNA catalytic properties of the minimum (−)Strsv sequence. Biochemistry (Mosc) 28:4929–4933

    Article  CAS  Google Scholar 

  15. Perez-Ruiz M, Barroso-delJesus A, Berzal-Herranz A (1999) Specificity of the hairpin ribozyme—sequence requirements surrounding the cleavage site. J Biol Chem 274:29376–29380

    Article  CAS  PubMed  Google Scholar 

  16. Ottink OM, Rampersad SM, Tessari M et al (2007) Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined-induced fit mechanism. RNA 13:2202–2212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ouellet DL, Plante I, Landry P et al (2008) Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res 36:2353–2365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ellington A (1998) Purification of oligonucleotides using denaturing polyacrylamide gel electrophoresis. Curr Protoc Mol Biol 42:2.12.11–12.12.17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sybren S. Wijmenga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nelissen, F.H.T., Heus, H.A., Wijmenga, S.S. (2015). Production of Homogeneous Recombinant RNA Using a tRNA Scaffold and Hammerhead Ribozymes. In: Ponchon, L. (eds) RNA Scaffolds. Methods in Molecular Biology, vol 1316. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2730-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2730-2_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2729-6

  • Online ISBN: 978-1-4939-2730-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics