Skip to main content

Large Scale Purification of RNA Nanoparticles by Preparative Ultracentrifugation

  • Protocol
RNA Nanotechnology and Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1297))

Abstract

Purification of large quantities of supramolecular RNA complexes is of paramount importance due to the large quantities of RNA needed and the purity requirements for in vitro and in vivo assays. Purification is generally carried out by liquid chromatography (HPLC), polyacrylamide gel electrophoresis (PAGE), or agarose gel electrophoresis (AGE). Here, we describe an efficient method for the large-scale purification of RNA prepared by in vitro transcription using T7 RNA polymerase by cesium chloride (CsCl) equilibrium density gradient ultracentrifugation and the large-scale purification of RNA nanoparticles by sucrose gradient rate-zonal ultracentrifugation or cushioned sucrose gradient rate-zonal ultracentrifugation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guo P, Zhang C, Chen C et al (1998) Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 2:149–155

    Article  CAS  Google Scholar 

  2. Mitra S, Shcherbakova IV, Altman RB et al (2008) High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis. Nucleic Acids Res 36:e63

    Article  Google Scholar 

  3. Guo P, Haque F, Hallahan B et al (2012) Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 22: 226–245

    CAS  Google Scholar 

  4. Khisamutdinov EF, Jasinski DL, Guo P (2014) RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS Nano 8:4771–4781

    Article  CAS  Google Scholar 

  5. Khisamutdinov E, Li H, Jasinski D et al (2014) Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square, and pentagon nanovehicles. Nucleic Acids Res 42:9996–10004

    Article  CAS  Google Scholar 

  6. Jasinski D, Khisamutdinov EF, Lyubchenko YL et al (2014) Physicochemically tunable poly-functionalized RNA square architecture with fluorogenic and ribozymatic properties. ACS Nano 8:7620–7629

    Article  CAS  Google Scholar 

  7. Shu Y, Haque F, Shu D et al (2013) Fabrication of 14 different rna nanoparticles for specific tumor targeting without accumulation in normal organs. RNA 19:766–777

    Article  Google Scholar 

  8. Shu Y, Shu D, Haque F et al (2013) Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells. Nat Protoc 8:1635–1659

    Article  CAS  Google Scholar 

  9. Shu Y, Cinier M, Shu D et al (2011) Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Methods 54:204–214

    Article  CAS  Google Scholar 

  10. Liu J, Guo S, Cinier M et al (2010) Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS Nano 5:237–246

    Article  Google Scholar 

  11. Haque F, Shu D, Shu Y et al (2012) Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today 7:245–257

    Article  CAS  Google Scholar 

  12. Shukla GC, Haque F, Tor Y et al (2011) A boost for the emerging field of RNA nanotechnology. ACS Nano 5:3405–3418

    Article  CAS  Google Scholar 

  13. Shu Y, Pi F, Sharma A et al (2014) Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 66C:74–89

    Article  Google Scholar 

  14. Leontis N, Sweeney B, Haque F et al (2013) Conference scene: advances in RNA nanotechnology promise to transform medicine. Nanomedicine 8:1051–1054

    Article  CAS  Google Scholar 

  15. Trautmann L, Janbazian L, Chomont N et al (2006) Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 12:1198–1202

    Article  CAS  Google Scholar 

  16. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833–842

    Article  CAS  Google Scholar 

  17. Zassenhaus HP, Butow RA, Hannon YP (1982) Rapid electroelution of nucleic-acids from agarose and acrylamide gels. Anal Biochem 125:125–130

    Article  CAS  Google Scholar 

  18. Anderson AC, Scaringe SA, Earp BE et al (1996) HPLC purification of RNA for crystallography and NMR. RNA 2:110–117

    CAS  Google Scholar 

  19. Glisin V, Crkvenjar R, Byus C (1974) Ribonucleic-acid isolated by cesium-chloride centrifugation. Biochemistry 13:2633–2637

    Article  CAS  Google Scholar 

  20. Ali A, Roossinck MJ (2007) Rapid and efficient purification of Cowpea chlorotic mottle virus by sucrose cushion ultracentrifugation. J Virol Methods 141:84–86

    Article  CAS  Google Scholar 

  21. Higashi K, Narayana KS, Adams HR et al (1966) Utilization of citric acid procedure and zonal ultracentrifugation for mass isolation of nuclear RNA from Walker 256 carcinosarcoma. Cancer Res 26:1582–1590

    CAS  Google Scholar 

  22. Lin CX, Perrault SD, Kwak M et al (2013) Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res 41:e40

    Article  CAS  Google Scholar 

  23. Eikenber EF, Bickle TA, Traut RR et al (1970) Separation of large quantities of ribosomal subunits by zonal ultracentrifugation. Eur J Biochem 12:113–116

    Article  Google Scholar 

  24. Patsch JR, Sailer S, Kostner G et al (1974) Separation of main lipoprotein density classes from human plasma by rate-zonal ultracentrifugation. J Lipid Res 15:356–366

    CAS  Google Scholar 

  25. Guo P, Erickson S, Anderson D (1987) A small viral RNA is required for in vitro packaging of bacteriophage phi29 DNA. Science 236:690–694

    Article  CAS  Google Scholar 

  26. Guo P, Shu Y, Binzel D et al (2012) Synthesis, conjugation, and labeling of multifunctional pRNA nanoparticles for specific delivery of siRNA, drugs and other therapeutics to target cells. Methods Mol Biol 928:197–219

    CAS  Google Scholar 

  27. Shu D, Moll WD, Deng Z et al (2004) Bottom-up assembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano Lett 4:1717–1723

    Article  CAS  Google Scholar 

  28. Shu D, Huang L, Hoeprich S et al (2003) Construction of phi29 DNA-packaging RNA (pRNA) monomers, dimers and trimers with variable sizes and shapes as potential parts for nano-devices. J Nanosci Nanotechnol 3:295–302

    Article  CAS  Google Scholar 

  29. Ando H, Watanabe S, Ohwaki T, Miyake Y (1985) Crystallization of excipients in tablets. J Pharm Sci 74:128–131

    Google Scholar 

Download references

Acknowledgements

The research was supported by NIH grants R01-EB003730 and U01-CA151648 to P.G. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH. Funding to Peixuan Guo’s Endowed Chair in Nanobiotechnology position is from the William Fairish Endowment Fund. PG is a cofounder of Kylin Therapeutics, Inc., RNA Nano, LLC., and Biomotor and Nucleic Acid Nanotechnology Development Corp., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peixuan Guo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jasinski, D.L., Schwartz, C.T., Haque, F., Guo, P. (2015). Large Scale Purification of RNA Nanoparticles by Preparative Ultracentrifugation. In: Guo, P., Haque, F. (eds) RNA Nanotechnology and Therapeutics. Methods in Molecular Biology, vol 1297. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2562-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2562-9_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2561-2

  • Online ISBN: 978-1-4939-2562-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics