Skip to main content

The Rhodopsin-Arrestin-1 Interaction in Bicelles

  • Protocol
  • First Online:
Rhodopsin

Abstract

G-protein-coupled receptors (GPCRs) are essential mediators of information transfer in eukaryotic cells. Interactions between GPCRs and their binding partners modulate the signaling process. For example, the interaction between GPCR and cognate G protein initiates the signal, while the interaction with cognate arrestin terminates G-protein-mediated signaling. In visual signal transduction, arrestin-1 selectively binds to the phosphorylated light-activated GPCR rhodopsin to terminate rhodopsin signaling. Under physiological conditions, the rhodopsin-arrestin-1 interaction occurs in highly specialized disk membrane in which rhodopsin resides. This membrane is replaced with mimetics when working with purified proteins. While detergents are commonly used as membrane mimetics, most detergents denature arrestin-1, preventing biochemical studies of this interaction. In contrast, bicelles provide a suitable alternative medium. An advantage of bicelles is that they contain lipids, which have been shown to be necessary for normal rhodopsin-arrestin-1 interaction. Here we describe how to reconstitute rhodopsin into bicelles, and how bicelle properties affect the rhodopsin-arrestin-1 interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilden U, Hall SW, Kühn H (1986) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A 83:1174–1178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Krupnick JG, Gurevich VV, Benovic JL (1997) Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. J Biol Chem 272:18125–18131

    Article  CAS  PubMed  Google Scholar 

  3. Jastrzebska B, Debinski A, Filipek S et al (2011) Role of membrane integrity on G protein-coupled receptors: rhodopsin stability and function. Prog Lipid Res 50:267–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Brown MF (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 73:159–180

    Article  CAS  PubMed  Google Scholar 

  5. Vishnivetskiy SA, Raman D, Wei J et al (2007) Regulation of arrestin binding by rhodopsin phosphorylation level. J Biol Chem 282:32075–32083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bayburt TH, Vishnivetskiy SA, McLean MA et al (2011) Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286:1420–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin. J Biol Chem 268:11628–11638

    CAS  PubMed  Google Scholar 

  8. Gurevich VV (1998) The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms. J Biol Chem 273:15501–15506

    Article  CAS  PubMed  Google Scholar 

  9. Gurevich VV, Benovic JL (1995) Visual arrestin binding to rhodopsin: diverse functional roles of positively charged residues within the phosphorylation-recognition region of arrestin. J Biol Chem 270:6010–6016

    Article  CAS  PubMed  Google Scholar 

  10. Gurevich VV, Benovic JL (1997) Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state. Mol Pharmacol 51:161–169

    CAS  PubMed  Google Scholar 

  11. Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25:105–111

    Article  CAS  PubMed  Google Scholar 

  12. Hirsch JA, Schubert C, Gurevich VV et al (1999) The 2.8 angstrom crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269

    Article  CAS  PubMed  Google Scholar 

  13. Granzin J, Cousin A, Weirauch M et al (2012) Crystal structure of p44, a constitutively active splice variant of visual arrestin. J Mol Biol 416:611–618

    Article  CAS  PubMed  Google Scholar 

  14. Kim YJ, Hofmann KP, Ernst OP et al (2013) Crystal structure of pre-activated arrestin p44. Nature 497:142–146

    Article  CAS  PubMed  Google Scholar 

  15. Zhuang TD, Chen QY, Cho MK et al (2013) Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc Natl Acad Sci U S A 110:942–947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Vishnivetskiy SA, Schubert C, Climaco GC et al (2000) An additional phosphate-binding element in arrestin molecule: implications for the mechanism of arrestin activation. J Biol Chem 275:41049–41057

    Article  CAS  PubMed  Google Scholar 

  17. Vishnivetskiy SA, Paz CL, Schubert C et al (1999) How does arrestin respond to the phosphorylated state of rhodopsin? J Biol Chem 274:11451–11454

    Article  CAS  PubMed  Google Scholar 

  18. Vishnivetskiy SA, Francis DJ, Van Eps N et al (2010) The role of arrestin alpha-helix I in receptor binding. J Mol Biol 395:42–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hanson SM, Francis DJ, Vishnivetskiy SA et al (2006) Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci U S A 103:4900–4905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kim M, Vishnivetskiy SA, Van Eps N et al (2012) Conformation of receptor-bound visual arrestin. Proc Natl Acad Sci U S A 109:18407–18412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ostermaier MK, Peterhans C, Jaussi R et al (2014) Functional map of arrestin-1 at single amino acid resolution. Proc Natl Acad Sci U S A 111:1825–1830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Vishnivetskiy SA, Baameur F, Findley KR et al (2013) Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 288:11741–11750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Vishnivetskiy SA, Chen Q, Palazzo MC et al (2013) Engineering visual arrestin-1 with special functional characteristics. J Biol Chem 288:11741–11750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sanders CR, Hare BJ, Howard KP et al (1994) Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog Nucl Magn Reson Spectrosc 26:421–444

    Article  CAS  Google Scholar 

  25. Sanders CR, Prosser RS (1998) Bicelles: a model membrane system for all seasons? Struct Folding Des 6:1227–1234

    Article  CAS  Google Scholar 

  26. Ujwal R, Bowie JU (2011) Crystallizing membrane proteins using lipidic bicelles. Methods 55:337–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Durr UHN, Gildenberg M, Ramamoorthy A (2012) The magic of bicelles lights up membrane protein structure. Chem Rev 112:6054–6074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rasmussen SG, Choi HJ, Rosenbaum DM et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  CAS  PubMed  Google Scholar 

  29. Ye WH, Lind J, Eriksson J et al (2014) Characterization of the morphology of fast-tumbling bicelles with varying composition. Langmuir 30:5488–5496

    Article  CAS  PubMed  Google Scholar 

  30. Beaugrand M, Arnold AA, Henin J et al (2014) Lipid concentration and molar ratio boundaries for the use of isotropic bicelles. Langmuir 30:6162–6170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Thompson AA, Liu JJ, Chun E et al (2011) GPCR stabilization using the bicelle-like architecture of mixed sterol-detergent micelles. Methods 55:310–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zocher M, Zhang C, Rasmussen SG et al (2012) Cholesterol increases kinetic, energetic, and mechanical stability of the human beta2-adrenergic receptor. Proc Natl Acad Sci U S A 109:E3463–E3472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rim J, Oprian DD (1995) Constitutive activation of opsin – interaction of mutants with rhodopsin kinase and arrestin. Biochemistry 34:11938–11945

    Article  CAS  PubMed  Google Scholar 

  34. Degrip WJ (1982) Thermal-stability of rhodopsin and opsin in some novel detergents. Methods Enzymol 81:256–265

    Article  CAS  Google Scholar 

  35. Reeves PJ, Hwa J, Khorana HG (1999) Structure and function in rhodopsin: kinetic studies of retinal binding to purified opsin mutants in defined phospholipid-detergent mixtures serve as probes of the retinal binding pocket. Proc Natl Acad Sci U S A 96:1927–1931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. McKibbin C, Farmer NA, Jeans C et al (2007) Opsin stability and folding: modulation by phospholipid bicelles. J Mol Biol 374:1319–1332

    Article  CAS  PubMed  Google Scholar 

  37. Gurevich VV, Gurevich EV (2008) GPCR monomers and oligomers: it takes all kinds. Trends Neurosci 31:74–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gurevich VV, Gurevich EV (2008) How and why do GPCRs dimerize? Trends Pharmacol Sci 29:234–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Bayburt TH, Leitz AJ, Xie G et al (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282:14875–14881

    Article  CAS  PubMed  Google Scholar 

  40. Whorton MR, Jastrzebska B, Park PSH et al (2008) Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem 283:4387–4394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Vishnivetskiy SA, Ostermaierm MK, Singhal A et al (2013) Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding. Cell Signal 25:2155–2162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Singhal A, Ostermaier MK, Vishnivetskiy SA et al (2013) Insights into congenital night blindness based on the structure of G90D rhodopsin. EMBO Rep 14:520–526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Sommer ME, Smith WC, Farrens DL (2006) Dynamics of arrestin-rhodopsin interactions: acidic phospholipids enable binding of arrestin to purified rhodopsin in detergent. J Biol Chem 281:9407–9417

    Article  CAS  PubMed  Google Scholar 

  44. Gurevich VV, Benovic JL (2000) Arrestin: mutagenesis, expression, purification, and functional characterization. Methods Enzymol 315:422–437

    Article  CAS  PubMed  Google Scholar 

  45. Gurevich VV, Benovic JL (1992) Cell-free expression of visual arrestin. Truncation mutagenesis identifies multiple domains involved in rhodopsin interaction. J Biol Chem 267:21919–21923

    CAS  PubMed  Google Scholar 

  46. Gurevich VV (1996) Use of bacteriophage RNA polymerase in RNA synthesis. In: Kuo LC, Olsen DB, Carroll SS (eds) Methods in enzymology, 275: 382–397

    Google Scholar 

  47. Weigelt J (1998) Single scan, sensitivity- and gradient-enhanced TROSY for multidimensional NMR experiments. J Am Chem 120:10778–10779

    Article  CAS  Google Scholar 

  48. Tugarinov V, Kay LE (2005) Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. Chembiochem 6:1567–1577

    Article  CAS  PubMed  Google Scholar 

  49. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  50. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352

    CAS  PubMed  Google Scholar 

  51. Goddard TD, Kneller DG (2008) SPARKY 3. University of California, San Francisco

    Google Scholar 

  52. Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739-745

    Google Scholar 

  53. Choe HW, Kim YJ, Park JH et al (2011) Crystal structure of metarhodopsin II. Nature 471:651–655

    Google Scholar 

  54. Alexander NS, Preininger AM, Kaya AI et al (2014) Energetic analysis of the rhodopsin-G-protein complex links the α5 helix to GDP release. Nat Struct Mol Biol 21:56–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Singh P, Wang B, Maeda T et al (2008) Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation. J Biol Chem 283:14053–14062

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Iverson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chen, Q. et al. (2015). The Rhodopsin-Arrestin-1 Interaction in Bicelles. In: Jastrzebska, B. (eds) Rhodopsin. Methods in Molecular Biology, vol 1271. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2330-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2330-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2329-8

  • Online ISBN: 978-1-4939-2330-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics