Skip to main content

Combining Whole-Mount In Situ Hybridization with Neuronal Tracing and Immunohistochemistry

  • Protocol
  • First Online:
In Situ Hybridization Methods

Part of the book series: Neuromethods ((NM,volume 99))

Abstract

Despite the presence of several markers to study the expression of genes (eGFP, LacZ), in situ hybridization remains one of the most powerful techniques to analyze gene expression. While this allows cellular identification of the expression of a single gene and, using fluorescent in situ hybridization two or occasionally more genes, it is often necessary to combine this technology with assays of neuronal projection/morphology, protein expression using antibody staining, and histology for cytological details. Since each task has certain levels of false negatives, combining them in a single preparation can compromise further correlative studies due to loss of fluorescence, loss of antigenic epitope, or loss of tissue morphology. We have designed a protocol that, when performed in sequence, will enable the researcher to combine several of these technologies in the same sample saving time and sparing expense. By combining neuronal tracing, whole-mount in situ hybridization, immunohistochemistry, and histology one can extract a maximal amount of data with limited loss in fidelity of each technique and optimal data superposition for a more complete understanding of phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98(2):81–85

    Article  CAS  PubMed  Google Scholar 

  2. Koopman P (2001) In situ hybridization to mRNA: from black art to guiding light. Int J Dev Biol 45(3):619–622

    CAS  PubMed  Google Scholar 

  3. Wallner GN, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14(2):136–143

    Article  CAS  PubMed  Google Scholar 

  4. Bouchard M et al (2010) Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 10:89

    Article  PubMed Central  PubMed  Google Scholar 

  5. Duncan JS, Fritzsch B (2013) Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One 8(4):e62046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pan N et al (2012) A novel Atoh1 “self-terminating” mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability. PLoS One 7(1):e30358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Fritzsch B, Glover J (2006) Evolution of the deuterostome central nervous system: an intercalation of developmental patterning processes with cellular specification processes. Evol Nerv Syst 2:1–24

    Google Scholar 

  8. Duncan J et al (2011) Combining lipophilic dye, in situ hybridization, immunohistochemistry, and histology. J Vis Exp 49:2451

    PubMed  Google Scholar 

  9. Hadjieconomou D et al (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8(3):260–266

    Article  CAS  PubMed  Google Scholar 

  10. Hama H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14(11):1481–1488

    Article  CAS  PubMed  Google Scholar 

  11. Chung K et al (2013) Structural and molecular interrogation of intact biological systems. Nature 497(7449):332–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Shcherbakova DM, Verkhusha VV (2013) Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods 10:751–754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Prigodich AE et al (2012) Multiplexed nanoflares: mRNA detection in live cells. Anal Chem 84(4):2062–2066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Cai D et al (2013) Improved tools for the Brainbow toolbox. Nat Methods 10(6):540–547

    Article  PubMed Central  CAS  Google Scholar 

  15. Abe T, Fujimori T (2013) Reporter mouse lines for fluorescence imaging. Dev Growth Differ 55:390–405

    Article  CAS  PubMed  Google Scholar 

  16. Fritzsch B (1993) Fast axonal diffusion of 3000 molecular weight dextran amines. J Neurosci Methods 50(1):95–103

    Article  CAS  PubMed  Google Scholar 

  17. Tonniges J et al (2010) Photo- and bio-physical characterization of novel violet and near-infrared lipophilic fluorophores for neuronal tracing. J Microsc 239(2):117–134

    CAS  PubMed  Google Scholar 

  18. Kopecky BJ et al (2012) Three-dimensional reconstructions from optical sections of thick mouse inner ears using confocal microscopy. J Microsc 248(3):292–298

    Article  CAS  PubMed  Google Scholar 

  19. Jahan I et al (2010) Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS One 5(7):e11661

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Confocal images were obtained at the University of Iowa Carver Center for Imaging. We thank the Office of the Vice President for Research (OVPR), University of Iowa College of Liberal Arts and Sciences (CLAS), and the P30 core grant for support (DC 010362). This work was in part supported by a NASA base grant (Bernd Fritzsch) and 1R43GM108470-01 (Gray, Fritzsch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Fritzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Duncan, J.S., Elliott, K.L., Kersigo, J., Gray, B., Fritzsch, B. (2015). Combining Whole-Mount In Situ Hybridization with Neuronal Tracing and Immunohistochemistry. In: Hauptmann, G. (eds) In Situ Hybridization Methods. Neuromethods, vol 99. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2303-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2303-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2302-1

  • Online ISBN: 978-1-4939-2303-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics