Skip to main content

A Simple Protocol for the Inference of RNA Global Pairwise Alignments

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1269))

Abstract

RNA alignment is an important step in the annotation and characterization of unknown RNAs, and several methods have been developed to meet the need of fast and accurate alignments. Being the performances of the aligning methods affected by the input RNA features, finding the most suitable method is not trivial. Indeed, no available method clearly outperforms the others. Here we present a simple workflow to help choosing the more suitable method for RNA pairwise alignment. We tested the performances of six algorithms, based on different approaches, on datasets created by merging publicly available datasets of known or curated RNA secondary structure annotations with datasets of curated RNA alignments. Then, we simulated the frequent case where the secondary structure is unknown by using the same alignment datasets but ignoring the known structure and instead predicting it. In conclusion, the proposed workflow for pairwise RNA alignment depends on the input RNA primary sequence identity and the availability of reliable secondary structures.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mercer TR, Gerhardt DJ, Dinger ME et al (2012) Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol 30:99–104. doi:10.1038/nbt.2024

    Article  CAS  Google Scholar 

  2. Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927. doi:10.1101/gad.17446611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Baker M (2011) Long noncoding RNAs: the search for function. Nat Methods 8:379–383. doi:10.1038/nmeth0511-379

    Article  CAS  Google Scholar 

  4. Burge SW, Daub J, Eberhardt R et al (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41:D226–D232. doi:10.1093/nar/gks1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gardner PP, Wilm A, Washietl S (2005) A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res 33:2433–2439. doi:10.1093/nar/gki541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wan Y, Kertesz M, Spitale RC et al (2011) Understanding the transcriptome through RNA structure. Nat Rev Genet 12:641–655. doi:10.1038/nrg3049

    Article  CAS  PubMed  Google Scholar 

  7. Sankoff D (1985) Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J Appl Math 45:810–825

    Article  Google Scholar 

  8. Havgaard JH, Torarinsson E, Gorodkin J (2007) Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix. PLoS Comput Biol 3:1896–1908. doi:10.1371/journal.pcbi.0030193

    Article  CAS  PubMed  Google Scholar 

  9. Harmanci AO, Sharma G, Mathews DH (2007) Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign. BMC Bioinformatics 8:130. doi:10.1186/1471-2105-8-130

    Article  PubMed Central  PubMed  Google Scholar 

  10. Will S, Reiche K, Hofacker IL et al (2007) Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3:e65. doi:10.1371/journal.pcbi.0030065

    Article  PubMed Central  PubMed  Google Scholar 

  11. Dowell RD, Eddy SR (2006) Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 7:400. doi:10.1186/1471-2105-7-400

    Article  PubMed Central  PubMed  Google Scholar 

  12. Taneda A (2010) Multi-objective pairwise RNA sequence alignment. Bioinformatics 26:2383–2390. doi:10.1093/bioinformatics/btq439

    Article  CAS  PubMed  Google Scholar 

  13. Notredame C, Higgins DG (1996) SAGA: sequence alignment by genetic algorithm. Nucleic Acids Res 24:1515–1524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Blin G, Denise A, Dulucq S et al (2007) Alignments of RNA structures. IEEE ACM Trans Comput Biol Bioinformatics 7:309–322. doi:10.1109/TCBB.2008.28

    Article  Google Scholar 

  15. Guignon V, Chauve C, Hamel S (2005) An edit distance between RNA stem-loops. In: Consens MP, Navarro G (eds) SPIRE. Springer, Heidelberg, pp 335–347

    Google Scholar 

  16. Lorenz R, Bernhart SH, Höner Zu Siederdissen C et al (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26. doi:10.1186/1748-7188-6-26

    Article  PubMed Central  PubMed  Google Scholar 

  17. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  18. Andronescu M, Bereg V, Hoos HH, Condon A (2008) RNA STRAND: the RNA secondary structure and statistical analysis database. BMC Bioinformatics 9:340. doi:10.1186/1471-2105-9-340

    Article  PubMed Central  PubMed  Google Scholar 

  19. Horesh Y, Doniger T, Michaeli S, Unger R (2007) RNAspa: a shortest path approach for comparative prediction of the secondary structure of ncRNA molecules. BMC Bioinformatics 8:366. doi:10.1186/1471-2105-8-366

    Article  PubMed Central  PubMed  Google Scholar 

  20. Widmann J, Stombaugh J, McDonald D et al (2012) RNASTAR: an RNA STructural Alignment Repository that provides insight into the evolution of natural and artificial RNAs. RNA 18:1319–1327. doi:10.1261/rna.032052.111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Berman HM, Kleywegt GJ, Nakamura H, Markley JL (2013) The future of the protein data bank. Biopolymers 99:218–222. doi:10.1002/bip.22132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the EPIGEN flagship project and PRIN 2010 (prot. 20108XYHJS_006) to MHC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Helmer-Citterich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mattei, E., Helmer-Citterich, M., Ferrè, F. (2015). A Simple Protocol for the Inference of RNA Global Pairwise Alignments. In: Picardi, E. (eds) RNA Bioinformatics. Methods in Molecular Biology, vol 1269. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2291-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2291-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2290-1

  • Online ISBN: 978-1-4939-2291-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics