Skip to main content

Brownian Dynamics Simulation of Peptides with the University of Houston Brownian Dynamics (UHBD) Program

  • Protocol
  • First Online:
Computational Peptidology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1268))

  • 2912 Accesses

Abstract

This chapter provides the background theory and a practical protocol for performing Brownian dynamics simulation of peptides. Brownian dynamics simulation represents a complementary approach to Monte Carlo and molecular dynamics methods. Unlike Monte Carlo methods, it could provide dynamical information in a timescale longer than the momentum relaxation time. On the other hand, it is faster than molecular dynamics by approximating the solvent by a continuum and by operating in the over-damped limit. This chapter introduces the use of the University of Houston Brownian Dynamics (UHBD) program [1, 2] to perform Brownian dynamics simulation on peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madura J, McCammon JA (1989) Brownian dynamics simulation of diffusional encounters between triose phosphate isomerase and D-glyceraldehyde phosphate. J Phys Chem 93:7285–7287

    Article  CAS  Google Scholar 

  2. Madura JD, Briggs JM, Wade RC, Davis ME, Luty BA et al (1995) Electrostatics and diffusion of molecules in solution - simulations with the University of Houston Brownian Dynamics Program. Comput Phys Commun 91:57–95

    Article  CAS  Google Scholar 

  3. Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69:1352–1360

    Article  CAS  Google Scholar 

  4. Langevin P (1908) On the theory of Brownian motion. R Acad Sci (Paris) 146:530

    CAS  Google Scholar 

  5. Hess B, Bekker H, Berendsen HJC, Fraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  6. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  7. Shen T, Wong CF, McCammon JA (2003) Brownian dynamics simulation of helix-capping motifs. Biopolymers 70:252–259

    Article  CAS  PubMed  Google Scholar 

  8. Shen TY, Wong CF, McCammon JA (2001) Atomistic Brownian dynamics simulation of peptide phosphorylation. J Am Chem Soc 123:9107–9111

    Article  CAS  PubMed  Google Scholar 

  9. Mehler EL (1990) Comparison of dielectric response models for simulating electrostatic effects in proteins. Protein Eng 3:415–417

    Article  CAS  PubMed  Google Scholar 

  10. Mehler EL, Solmajer T (1991) Electrostatic effects in proteins: comparison of dielectric and charge models. Protein Eng 4:903–910

    Article  CAS  PubMed  Google Scholar 

  11. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127–6129

    Article  CAS  Google Scholar 

  12. Qiu D, Shenkin PS, Hollinger FP, Still WC (1997) The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. J Phys Chem A 101:3005–3014

    Article  CAS  Google Scholar 

  13. David L, Luo R, Gilson MK (2000) Comparison of generalized born and Poisson models: energetics and dynamics of HIV protease. J Comput Chem 21:295–309

    Article  CAS  Google Scholar 

  14. Ghosh A, Rapp CS, Friesner RA (1998) Generalized born model based on a surface integral formulation. J Phys Chem B 102:10983–10990

    Article  CAS  Google Scholar 

  15. Lee MS, Salsbury FR, Brooks CL (2002) Novel generalized Born methods. J Chem Phys 116:10606–10614

    Article  CAS  Google Scholar 

  16. Smart JL, Marrone TJ, McCammon JA (1997) Conformational sampling with Poisson-Boltzmann forces and a stochastic dynamics/Monte Carlo method: application to alanine dipeptide. J Comput Chem 18:1750–1759

    Article  CAS  Google Scholar 

  17. Davis ME, Madura JD, Luty BA, McCammon JA (1991) Electrostatics and diffusion of molecules in solution - simulations with the University-of-Houston-Brownian Dynamics Program. Comput Phys Commun 62:187–197

    Article  CAS  Google Scholar 

  18. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S et al (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  20. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  21. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD et al (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung F. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shen, T., Wong, C.F. (2015). Brownian Dynamics Simulation of Peptides with the University of Houston Brownian Dynamics (UHBD) Program. In: Zhou, P., Huang, J. (eds) Computational Peptidology. Methods in Molecular Biology, vol 1268. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2285-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2285-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2284-0

  • Online ISBN: 978-1-4939-2285-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics