Skip to main content

Transient Expression in HEK 293 Cells: An Alternative to E. coli for the Production of Secreted and Intracellular Mammalian Proteins

  • Protocol
  • First Online:
Insoluble Proteins

Abstract

Transient transfection of human embryonic kidney cells (HEK 293) enables the rapid and affordable lab-scale production of recombinant proteins. In this chapter protocols for the expression and purification of both secreted and intracellular proteins using transient expression in HEK 293 cells are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirose S, Kawamura Y, Yokota K et al (2011) Statistical analysis of features associated with protein expression/solubility in an in vivo Escherichia coli expression system and a wheat germ cell-free expression system. J Biochem 150:73–81

    Article  CAS  PubMed  Google Scholar 

  2. Geisse S, Henke M (2005) Large-scale transient transfection of mammalian cells: a newly emerging attractive option for recombinant protein production. J Struct Funct Genomics 6:165–170

    Article  CAS  PubMed  Google Scholar 

  3. Van Craenenbroeck K, Vanhoenacker P, Haegeman G (2000) Episomal vectors for gene expression in mammalian cells. Eur J Biochem 267:5665–5678

    Article  PubMed  Google Scholar 

  4. Boussif O, Lezoualc'h F, Zanta MA et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30(2):E9

    Article  PubMed Central  PubMed  Google Scholar 

  6. Aricescu AR, Owens RJ (2013) Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology. Curr Opin Struct Biol 23:345–356

    Article  CAS  PubMed  Google Scholar 

  7. Einhauer A, Jungbauer A (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49:455–465

    Article  CAS  PubMed  Google Scholar 

  8. Ohana RF, Hurst R, Vidugiriene J et al (2011) HaloTag-based purification of functional human kinases from mammalian cells. Protein Expr Purif 76:154–164

    Article  CAS  PubMed  Google Scholar 

  9. Tennent GA, Dziadzio M, Triantafillidou E et al (2007) Normal circulating serum amyloid P component concentration in systemic sclerosis. Arthritis Rheum 56:2013–2017

    Article  CAS  PubMed  Google Scholar 

  10. Pepys MB, Booth DR, Hutchinson WL et al (1997) Amyloid P component. A critical review. Amyloid 4:274–295

    Article  CAS  Google Scholar 

  11. Hawkins PN, Lavender JP, Pepys MB (1990) Evaluation of systemic amyloidosis by scintigraphy with 123I-labeled serum amyloid P component. N Engl J Med 323:508–513

    Article  CAS  PubMed  Google Scholar 

  12. Pepys MB, Herbert J, Hutchinson WL et al (2002) Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417:254–259

    Article  CAS  PubMed  Google Scholar 

  13. Duffield JS, Lupher ML Jr (2010) PRM-151 (recombinant human serum amyloid P/pentraxin 2) for the treatment of fibrosis. Drug News Perspect 23:305–315

    Article  CAS  PubMed  Google Scholar 

  14. Hernandez AI, Blace N, Crary JF et al (2003) Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory. J Biol Chem 278:40305–40316

    Article  CAS  PubMed  Google Scholar 

  15. Kelly MT, Crary JF, Sacktor TC (2007) Regulation of protein kinase Mzeta synthesis by multiple kinases in long-term potentiation. J Neurosci 27:3439–3444

    Article  CAS  PubMed  Google Scholar 

  16. Glanzman DL (2013) PKM and the maintenance of memory. F1000 Biol Rep 5:4

    Article  PubMed Central  PubMed  Google Scholar 

  17. Price TJ, Ghosh S (2013) ZIPping to pain relief: the role (or not) of PKMzeta in chronic pain. Mol Pain 9:6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Yang WM, Yao YL, Sun JM et al (1997) Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem 272:28001–28007

    Article  CAS  PubMed  Google Scholar 

  19. Guenther MG, Barak O, Lazar MA (2001) The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21:6091–6101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wagner JM, Hackanson B, Lubbert M et al (2010) Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics 1:117–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Graff J, Rei D, Guan JS et al (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483:222–226

    Article  PubMed Central  PubMed  Google Scholar 

  22. Shirakawa K, Chavez L, Hakre S et al (2013) Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol 21:277–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Watson PJ, Fairall L, Santos GM et al (2012) Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481:335–340

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Berrow NS, Alderton D, Sainsbury S et al (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35:e45

    Article  PubMed Central  PubMed  Google Scholar 

  25. Berrow NS, Alderton D, Owens RJ (2009) The precise engineering of expression vectors using high-throughput in-fusion PCR cloning. Methods Mol Biol 498:75–90

    Article  CAS  PubMed  Google Scholar 

  26. Bird LE (2011) High throughput construction and small scale expression screening of multi-tag vectors in Escherichia coli. Methods 55:29–37

    Article  CAS  PubMed  Google Scholar 

  27. Nettleship JE, Rahman-Huq N, Owens RJ (2009) The production of glycoproteins by transient expression in mammalian cells. Methods Mol Biol 498:245–263

    Article  CAS  PubMed  Google Scholar 

  28. Aricescu AR, Lu W, Jones EY (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62:1243–1250

    Article  PubMed  Google Scholar 

  29. Chang VT, Crispin M, Aricescu AR et al (2007) Glycoprotein structural genomics: solving the glycosylation problem. Structure 15:267–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

The OPPF-UK is funded by the Medical Research Council, UK (grant MR/K018779/1). P.J.W., L.F., and J.W.R.S. are funded by the Wellcome Trust (grants WT085408 and WT100237). J.M.G.C. is funded by a University of Portsmouth IBBS studentship, and S.E.K. by the University of Portsmouth Research Development Fund. M.P., A.U., and S.B. are funded by the BBSRC, UK (grant BB/J008176/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne E. Nettleship .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nettleship, J.E. et al. (2015). Transient Expression in HEK 293 Cells: An Alternative to E. coli for the Production of Secreted and Intracellular Mammalian Proteins. In: García-Fruitós, E. (eds) Insoluble Proteins. Methods in Molecular Biology, vol 1258. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2205-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2205-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2204-8

  • Online ISBN: 978-1-4939-2205-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics