Skip to main content

Herpes Simplex Virus Type 1 (HSV-1 )-Derived Amplicon Vectors for Gene Transfer and Gene Therapy

  • Protocol
  • First Online:
Neuronal Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1254))

Abstract

Amplicons are defective, helper -dependent, herpes simplex virus type 1 (HSV-1 )-derived vectors. The main interest of these vectors as gene transfer tools stems from the fact that the amplicon vector genomes do not carry protein-encoding viral sequences . Consequently, they are completely safe for the host and non-toxic for the infected cells . Moreover, the complete absence of virus genes provides space to accommodate very large foreign DNA sequences, up to almost 150-kbp, the size of the virus genome . This large transgene capacity can be used to deliver complete gene loci , including introns and exons , as well as long regulatory sequences , conferring tissue-specific expression , or stable maintenance of the transgene in proliferating cells . During many years the development of these vectors and their application in gene transfer experiments was hindered by the presence of contaminating toxic helper virus particles in the vector stocks. In recent years however, two different methodologies have been developed that allow generating amplicon stocks either completely free of helper particles or only faintly contaminated with fully defective helper particles. This chapter summarizes these two methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A/H:

Amplicon/helper

HC:

Helper -contaminated stocks

HF:

Helper-free stocks

PFU:

Plaque forming units

TU:

Transducing units

References

  1. Sheldrick P, Berthelot N (1975) Inverted repetitions in the chromosome of herpes simplex virus. Cold Spring Harb Symp Quant Biol 39(Pt 2):667–678

    PubMed  Google Scholar 

  2. Wadsworth S, Jacob RJ, Roizman B (1975) Anatomy of herpes simplex virus DNA. II. Size, composition, and arrangement of inverted terminal repetitions. J Virol 15:1487–1497

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Roizman B, Sears AM (1990) Herpes simplex viruses and their replication. In: Fields BN, Knipe DM (eds) Virology, 2nd edn. Raven Press Ltd., New York, pp 1795–1841

    Google Scholar 

  4. Roizman B, Ward PL (1994) Herpes simplex genes: the blueprint of a successful human pathogen. Trends Genet 10:267–274

    Article  PubMed  Google Scholar 

  5. Stow ND, McMonagle EC (1983) Characterization of the TRS/IRS origin of DNA replication of herpes simplex virus type 1. Virology 130:427–438

    Article  CAS  PubMed  Google Scholar 

  6. Weller SK, Spadaro A, Schaffer JE et al (1985) Cloning, sequencing and functional analysis of oriL, a herpes simplex virus type 1 origin of DNA synthesis. Mol Cell Biol 5:930–942

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Igarashi K, Fawl R, Roller RJ et al (1983) Construction and properties of a recombinant herpes simplex virus 1 lacking both S-component origins of DNA synthesis. J Virol 67:2123–2132

    Google Scholar 

  8. Polvino-Bodnar M, Orberg PK, Schaffer PA (1987) Herpes simplex virus type 1 oriLis not required for virus replication or for the establishment and reactivation of latent infection in mice. J Virol 61:3528–3535

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Deiss LP, Chou J, Frenkel N (1986) Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. J Virol 59:605–618

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Mocarski ES, Deiss LP, Frenkel N (1985) The nucleotide sequence and structural features of a novel US-a junction present in a defective herpes simplex virus genome. J Virol 55:140–146

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Mocarski ES, Roizman B (1981) Site-specific inversion sequence of the herpes simplex virus genome: domain and structural features. Proc Natl Acad Sci U S A 78:7047–7051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bataille D, Epstein AL (1995) Herpes simplex virus type 1 replication and recombination. Biochimie 77:787–795

    Article  CAS  PubMed  Google Scholar 

  13. Spaete RR, Frenkel N (1982) The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30:295–304

    Article  CAS  PubMed  Google Scholar 

  14. Spaete RR, Frenkel N (1985) The herpes simplex virus amplicon: analyses of cis-acting replication functions. Proc Natl Acad Sci U S A 82:694–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Vlazny DA, Frenkel N (1981) Replication of herpes simplex virus DNA: localization of replication recognition signals within defective virus genomes. Proc Natl Acad Sci U S A 78:742–746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Boehmer PE, Lehman IR (1997) Herpes simplex virus DNA replication. Annu Rev Biochem 66:347–384

    Article  CAS  PubMed  Google Scholar 

  17. Kwong AD, Frenkel N (1984) Herpes simplex virus amplicon: effect of size on replication of constructed defective genomes containing eucaryotic DNA sequences. J Virol 51:595–603

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Fraefel C, Song S, Lim F et al (1996) Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J Virol 70:7190–7197

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Saeki Y, Fraefel C, Ichikawa T et al (2001) Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol Ther 3:591–601

    Article  CAS  PubMed  Google Scholar 

  20. Zaupa C, Revol-Guyot V, Epstein AL (2003) Improved packaging system for generation of high levels non-cytotoxic HSV-1 amplicon vectors using Cre-loxP1 site-specific recombination to delete the packaging signals of defective helper genomes. Human Gene Ther 14:1049–1063

    Article  CAS  Google Scholar 

  21. Smith IL, Hardwicke MA, Sandri-Goldin RM (1992) Evidence that the herpes simplex virus immediate early protein ICP27 acts post-transcriptionally during infection to regulate gene expression. Virology 186:74–86

    Article  CAS  PubMed  Google Scholar 

  22. Krisky DM, Wolfe D, Goins WF et al (1998) Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther 5:1593–1603

    Article  CAS  PubMed  Google Scholar 

  23. Kashima T, Vinters HV, Campagnoni AT (1995) Unexpected expression of intermediate filament protein genes in human oligodendroglioma cell lines. J Neuropathol Exp Neurol 54:23–31

    Article  CAS  PubMed  Google Scholar 

  24. McGeoch DJ, Dalrymple MA, Davison AJ et al (1988) The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69:1531–15374

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto L. Epstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fraefel, C., Marconi, P., Epstein, A.L. (2015). Herpes Simplex Virus Type 1 (HSV-1 )-Derived Amplicon Vectors for Gene Transfer and Gene Therapy . In: Lossi, L., Merighi, A. (eds) Neuronal Cell Death. Methods in Molecular Biology, vol 1254. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2152-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2152-2_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2151-5

  • Online ISBN: 978-1-4939-2152-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics