Skip to main content

Scalable Network Communication Using Unreliable RDMA

  • Chapter
  • First Online:

Abstract

High-performance interconnects play a pivotal and essential role in the performance and functionality of modern large-scale computational systems, including datacenters and high-performance computing (HPC) architectures. Commercial datacenter applications require that a large number of small independent tasks be performed rapidly in parallel with upper bounds on individual task delays. This emphasis on large numbers of tasks and limited intertask dependencies leads to such computing being known as capacity computing. The term high-performance computing traditionally refers to large-scale applications running exclusively on a large system. This type of computing is referred to as capability computing. It requires that the system coordinate a small number of applications over a large number of resources (e.g., nodes). Capability computing is generally most useful for computation-intensive scientific applications. Cloud computing has begun to move HPC applications from dedicated machines into the cloud, where they can take advantage of commercial datacenter infrastructure.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990. [Online]. Available: http://doi.acm.org/10.1145/79173.79181

  2. B.W. Barrett, R. Brightwell, R.E. Grant, S. Hemmert, K. Pedretti, K. Wheeler, K.D. Underwood, R. Riesen, A.B. MacCabe, T. Hudson, The Portals 4.0.2 Networking Programming Interface, Sandia National Laboratories, October 2014, Tech. Rep. SAND2014-19568

    Google Scholar 

  3. RDMA Consortium, “July 2013.” [Online]. Available: http://www.rdmaconsortium.org

  4. Internet Engineering Taskforce. July 2013. [Online]. Available: www.ietf.org

  5. D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. M. Merritt, E. Gronke, and C. Dodd, “The virtual interface architecture,” Micro, IEEE, vol. 18, no. 2, pp. 66–76, 1998.

    Google Scholar 

  6. J. Hilland, P. Culley, J. Pinkerton, and R. Recio, “RDMA protocol verbs specification,” RDMAC Consortium Draft Specification draft-hilland-iwarp-verbsv1. 0-RDMAC, 2003.

    Google Scholar 

  7. R. Recio, P. Culley, D. Garcia, J. Hilland, and B. Metzler, “An RDMA protocol specification,” IETF Internet-draft draft-ietf-rddp-rdmap-03. txt (work in progress), Tech. Rep., 2005.

    Google Scholar 

  8. H. Shah, J. Pinkerton, R. Recio, and P. Culley, “Direct data placement over reliable transports (version 1.0),” RDMA Consortium, October, 2002.

    Google Scholar 

  9. P. Culley, U. Elzur, R. Recio, S. Baily et al., “Marker PDU aligned framing for TCP specification (version 1.0),” RDMA Consortium, October, 2002.

    Google Scholar 

  10. B. Hauser, “iWARP ethernet: eliminating overhead in data center designs,” NetEffect Inc. White paper, 2006.

    Google Scholar 

  11. InfiniBand Trade Association. InfiniBand architecture specification, release 1.2.1, nov. 2007.

    Google Scholar 

  12. InfiniBand Trade Association. InfiniBand architecture specification, release 1.2.1, annex A14: Extended Reliable Connected Transport Service, mar. 2009.

    Google Scholar 

  13. G. Huston, “TCP performance,” The Internet Protocol Journal, vol. 3, no. 2, pp. 2–24, 2000.

    Google Scholar 

  14. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson, “RFC 4960: Stream control transmission protocol,” Network Working Group, 2007.

    Google Scholar 

  15. Cisco, VNI, “Hyperconnectivity and the approaching zettabyte era,” White paper, 2013.

    Google Scholar 

  16. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RFC 3550,” RTP: a transport protocol for real-time applications, vol. 7, 2003.

    Google Scholar 

  17. OpenFabrics Alliance, “July 2013.” [Online]. Available: http://www.openfabrics.org

  18. Ryan E. Grant, Mohammad J. Rashti, Pavan Balaji, and Ahmad Afsahi, “Remote Direct Memory Access over Datagrams”, U.S. Patent #8903935, December 12, 2014.

    Google Scholar 

  19. J. Pinkerton, E. Deleganes, and M. Krause, “Sockets direct protocol (SDP) for iWARP over TCP (v1. 0),” RDMA Consortium, 2003.

    Google Scholar 

  20. S. Hefty. (2013) Rsockets. Intel Corporation. [Online]. Available: https://www.openfabrics.org/ofa-documents/doc_download/495-rsockets.html

  21. IEEE. IEEE standard for local and metropolitan area networks - virtual bridged local area networks – amendment: priority-based flow control - 802.1qbb. [Online]. Available: http://www.ieee802.org/1/pages/802.1bb.html

  22. IEEE. IEEE standard for local and metropolitan area networks - virtual bridged local area networks – amendment 10: congestion notification - 802.1qau. [Online]. Available: http://www.ieee802.org/1/pages/802.1au.html

  23. IEEE. IEEE standard for local and metropolitan area networks - virtual bridged local area networks – amendment: enhanced transmission selection - 802.1qaz. [Online]. Available: http://www.ieee802.org/1/pages/802.1az.html

  24. IEEE. IEEE standard for station and media access control connectivity - 802.1ab. [Online]. Available: http://www.ieee802.org/1/pages/802.1ab.html

  25. INCITS technical committee T11. ANSI standard FC-BB-5 - fibre channel over ethernet (FCoE). [Online]. Available: http://www.t11.org/ftp/t11/pub/fc/bb-5/09-056v5.pdf

  26. R. Perlman, “Introduction to TRILL,” The Internet Protocol Journal, vol. 4, no. 3, pp. 2–20, 2011.

    MathSciNet  Google Scholar 

  27. D. Cohen, T. Talpey, A. Kanevsky, U. Cummings, M. Krause, R. Recio, D. Crupnicoff, L. Dickman, and P. Grun, “Remote direct memory access over the converged enhanced ethernet fabric: Evaluating the options,” in Proceedings of the 17th IEEE Symposium on High Performance Interconnects (HOTI). IEEE, 2009, pp. 123–130.

    Google Scholar 

  28. B. Goglin, “Design and implementation of open-mx: High-performance message passing over generic ethernet hardware,” in Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2008, pp. 1–7.

    Google Scholar 

  29. M. J. Rashti, R. E. Grant, P. Balaji, and A. Afsahi, “iWARP redefined: Scalable connectionless communication over high-speed ethernet,” in Proceedings of the 2010 International Conference on High Performance Computing (HiPC). IEEE, 2010, pp. 1–10.

    Google Scholar 

  30. Ohio Supercomputing Center, “Software implementation and testing of iWARP protocol,” 2013. [Online]. Available: http://www.osc.edu/research/network_file/projects/iwarp/ iwarp_main.shtml

  31. D. Dalessandro, A. Devulapalli, and P. Wyckoff, “Design and implementation of the iWARP protocol in software,” in Proceedings of the 17th IASTED International Conference on Parallel and Distributed Computing and Systems, Phoenix, AZ, 2005.

    Google Scholar 

  32. D. Dalessandro, A. Devulapalli, and P. Wyckoff, “iWARP protocol kernel space software implementation,” in Proceedings of the 20th International Parallel and Distributed Processing Symposium (IPDPS), 2006.

    Google Scholar 

  33. B. Metzler, P. Frey, and A. Trivedi, “A software iWARP driver for OpenFabrics,” in Proceedings of the OpenFabrics Alliance 2010 Sonoma Workshop, 2010.

    Google Scholar 

  34. W. Matthews and L. Cottrell, “The PingER project: active internet performance monitoring for the HENP community,” Communications Magazine, IEEE, vol. 38, no. 5, pp. 130–136, 2000.

    Article  Google Scholar 

  35. VideoLan Project, “VLC media player, May 2013.” [Online]. Available: http://www.videolan.org/vlc/

  36. R. Gayraud, O. Jacques, and C. Wright, “SIPp: traffic generator for the SIP protocol,” 2013.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada Grant #RGPIN/238964-2011; Canada Foundation for Innovation and Ontario Innovation Trust Grant #7154; U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357; and the National Science Foundation Grant #0702182.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan E. Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grant, R., Rashti, M., Balaji, P., Afsahi, A. (2015). Scalable Network Communication Using Unreliable RDMA. In: Khan, S., Zomaya, A. (eds) Handbook on Data Centers. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2092-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2092-1_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2091-4

  • Online ISBN: 978-1-4939-2092-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics