Skip to main content

Theory of Active Suspensions

  • Chapter
  • First Online:
Complex Fluids in Biological Systems

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Active suspensions, of which a bath of swimming microorganisms is a paradigmatic example, denote large collections of individual particles or macromolecules capable of converting fuel into mechanical work and microstructural stresses. Such systems, which have excited much research in the last decade, exhibit complex dynamical behaviors such as large-scale correlated motions and pattern formation due to hydrodynamic interactions. In this chapter, we summarize efforts to model these systems using particle simulations and continuum kinetic theories. After reviewing results from experiments and simulations, we present a general kinetic model for a suspension of self-propelled rodlike particles and discuss its stability and nonlinear dynamics. We then address extensions of this model that capture the effect of steric interactions in concentrated systems, the impact of confinement and interactions with boundaries, and the effect of the suspending medium rheology. Finally, we discuss new active systems such as those that involve the interactions of biopolymers with immersed motor proteins and surface-bound suspensions of chemically powered particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Aranson, Physics 6, 61 (2013)

    Google Scholar 

  2. H.P. Zhang, A. Be’er, E.L. Florin, H.L. Swinney, Proc. Natl. Acad. Sci. USA 107, 13626 (2010)

    Google Scholar 

  3. T. Sanchez, D. Chen, S. DeCamp, M. Heymann, Z. Dogic, Nature 491, 431 (2012)

    ADS  Google Scholar 

  4. V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Nature 467, 73 (2010)

    ADS  Google Scholar 

  5. S. Thutupalli, R. Seeman, S. Herminghaus, New J. Phys. 13, 073021 (2011)

    ADS  Google Scholar 

  6. C.A. Weber, T. Hanke, J. Deseigne, S. Léonard, O. Dauchot, E. Frey, H. Chaté, Phys. Rev. Lett. 110, 208001 (2013)

    ADS  Google Scholar 

  7. S. Ramaswamy, Annu. Rev. Condens. Matt. 1, 323 (2010)

    ADS  Google Scholar 

  8. M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R. Aditi Simha. Rev. Mod. Phys. 85, 1143 (2013)

    ADS  Google Scholar 

  9. D. Saintillan, M.J. Shelley, C.R. Physique 14, 497 (2013)

    Google Scholar 

  10. C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J.O. Kessler, Phys. Rev. Lett. 93, 098103 (2004)

    ADS  Google Scholar 

  11. L.H. Cisneros, J.O. Kessler, S. Ganguly, R.E. Goldstein, Phys. Rev. E 83, 061907 (2011)

    ADS  Google Scholar 

  12. J. Dunkel, S. Heidenreich, K. Drescher, H.H. Wensink, M. Bar, R.E. Goldstein, Phys. Rev. Lett. 110, 228102 (2013)

    ADS  Google Scholar 

  13. S. Köhler, V. Schaller, A.R. Bausch, PLoS ONE 6, e23798 (2011)

    ADS  Google Scholar 

  14. T. Shinar, M. Mana, F. Piano, M. Shelley, Proc. Natl. Acad. Sci. 108, 10508 (2011)

    ADS  Google Scholar 

  15. F. Woodhouse, R.E. Goldstein, Proc. Natl. Acad. Sci. USA 110, 14132 (2013)

    ADS  Google Scholar 

  16. F. Nedelec, T. Surrey, A.C. Maggs, S. Leibler, Nature 389, 305 (1997)

    ADS  Google Scholar 

  17. Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté, K. Oiwa, Nature 483, 448 (2012)

    ADS  Google Scholar 

  18. W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K.S. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)

    Google Scholar 

  19. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    ADS  Google Scholar 

  20. S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)

    ADS  Google Scholar 

  21. D. Takagi, A. Braunschweig, J. Zhang, M. Shelley, Phys. Rev. Lett. 110, 038301 (2013)

    ADS  Google Scholar 

  22. A. Bricard, J.B. Caussin, N. Desreumaux, O. Dauchot, D. Bartolo, Nature 503, 95 (2013)

    ADS  Google Scholar 

  23. A. Kudrolli, G. Lumay, D. Volfson, L.S. Tsimring, Phys. Rev. Lett. 100, 058001 (2008)

    ADS  Google Scholar 

  24. J. Deseigne, O. Dauchot, H. Chaté, Phys. Rev. Lett. 105, 098001 (2010)

    ADS  Google Scholar 

  25. T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)

    ADS  Google Scholar 

  26. N.H. Mendelson, A. Bourque, K. Wilkening, K.R. Anderson, J.C. Watkins, J. Bacteriol. 181, 600 (1999)

    Google Scholar 

  27. I. Tuval, L. Cisneros, C. Dombrowski, C.W. Wolgemuth, J.O. Kessler, R.E. Goldstein, Proc. Natl. Acad. Sci. USA 102, 2277 (2005)

    ADS  MATH  Google Scholar 

  28. A. Sokolov, R.E. Goldstein, F.I. Feldchtein, I.S. Aranson, Phys. Rev. E 80, 031903 (2009)

    ADS  Google Scholar 

  29. X.L. Wu, A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000)

    ADS  Google Scholar 

  30. K.C. Leptos, J.S. Guasto, J.P. Gollub, A.I. Pesci, R.E. Goldstein, Phys. Rev. Lett. 103, 198103 (2009)

    ADS  Google Scholar 

  31. G.L. Miño, J. Dunstan, A. Rousselet, E. Clément, R. Soto, J. Fluid Mech. 729, 423 (2013)

    ADS  MATH  Google Scholar 

  32. J. Orozco, B. Jurado-Sánchez, G. Wagner, W. Gao, R. Vazquez-Duhalt, S. Sattayasamitsathit, M. Galarnyk, A. Cortés, D. Saintillan, J. Wang, Langmuir 30, 5082 (2014)

    Google Scholar 

  33. M.J. Kim, K.S. Breuer, Anal. Chem. 79, 955 (2007)

    Google Scholar 

  34. H. Kurtuldu, J.S. Guasto, K.A. Johnson, J.P. Gollub, Phys. Rev. Lett. 108, 10391 (2011)

    Google Scholar 

  35. A. Sokolov, I.S. Aranson, Phys. Rev. Lett. 103, 148101 (2009)

    ADS  Google Scholar 

  36. L. Giomi, T.B. Liverpool, M.C. Marchetti, Phys. Rev. E 81, 051908 (2010)

    ADS  MathSciNet  Google Scholar 

  37. D. Saintillan, Exp. Mech. 50, 1275 (2010)

    Google Scholar 

  38. J. Gachelin, G. Miño, H. Berthet, A. Lindner, A. Rousselet, E. Clément, Phys. Rev. Lett. 110, 268103 (2013)

    ADS  Google Scholar 

  39. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    ADS  MathSciNet  Google Scholar 

  40. E.M. Purcell, Am. J. Phys. 45, 3 (1977)

    ADS  Google Scholar 

  41. C. Brennen, H. Winet, Annu. Rev. Fluid Mech. 9, 339 (1977)

    ADS  Google Scholar 

  42. K. Drescher, J. Dunkel, L.H. Cisneros, S. Ganguly, R.E. Goldstein, Proc. Natl. Acad. Sci. USA 108, 10940 (2011)

    Google Scholar 

  43. J.S. Guasto, K.A. Johnson, J.P. Gollub, Phys. Rev. Lett. 105, 168102 (2010)

    ADS  Google Scholar 

  44. S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Dover, NewYork, 2005)

    Google Scholar 

  45. K. Drescher, R.E. Goldstein, N. Michel, M. Polin, I. Tuval, Phys. Rev. Lett. 105, 168101 (2010)

    ADS  Google Scholar 

  46. S. Fürthauer, S. Ramaswamy, Phys. Rev. Lett. 111, 238102 (2013)

    ADS  Google Scholar 

  47. M. Leoni, T.B. Liverpool, Phys. Rev. Lett. 112, 148104 (2014)

    ADS  Google Scholar 

  48. T. Ishikawa, M.P. Simmonds, T.J. Pedley, J. Fluid Mech. 568, 119 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  49. Q. Liao, G. Subramanian, M.P. DeLisa, D.L. Koch, M. Wu, Phys. Fluids 19, 061701 (2007)

    ADS  Google Scholar 

  50. V. Gyrya, I.S. Aranson, L.V. Berlyand, D. Karpeev, Bull. Math. Bio. 72, 148 (2010)

    MATH  MathSciNet  Google Scholar 

  51. J.P. Hernández-Ortiz, C.G. Stoltz, M.D. Graham, Phys. Rev. Lett. 95, 204501 (2005)

    ADS  Google Scholar 

  52. J.P. Hernández-Ortiz, P.T. Underhill, M.D. Graham, J. Phys.: Condens. Matter 21, 204107 (2009)

    ADS  Google Scholar 

  53. J.R. Blake, J. Fluid Mech. 46, 199 (1971)

    ADS  MATH  Google Scholar 

  54. T. Ishikawa, T.J. Pedley, J. Fluid Mech. 588, 437 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  55. T. Ishikawa, J.T. Locsei, T.J. Pedley, Phys. Rev. E 82, 021408 (2010)

    ADS  Google Scholar 

  56. T. Ishikawa, T.J. Pedley, Phys. Rev. Lett. 100, 088103 (2008)

    ADS  Google Scholar 

  57. T. Ishikawa, J.T. Locsei, T.J. Pedley, J. Fluid Mech. 615, 401 (2008)

    ADS  MATH  MathSciNet  Google Scholar 

  58. A.A. Evans, T. Ishikawa, T. Yamaguchi, E. Lauga, Phys. Fluids 23, 111702 (2011)

    ADS  Google Scholar 

  59. D. Saintillan, M. Shelley, J.R. Soc. Interface 9, 571 (2012)

    Google Scholar 

  60. D. Saintillan, M. Shelley, Phys. Rev. Lett. 99, 058102 (2007)

    ADS  Google Scholar 

  61. R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)

    ADS  Google Scholar 

  62. I.S. Aranson, A. Sokolov, J.O. Kessler, R.E. Goldstein, Phys. Rev. E 75, 040901 (2007)

    ADS  Google Scholar 

  63. C. Wolgemuth, J. Biophys.95, 1564 (2008)

    Google Scholar 

  64. S. Mishra, A. Baskaran, M.C. Marchetti, Phys. Rev. E 81, 061916 (2010)

    ADS  Google Scholar 

  65. J. Dunkel, S. Heidenreich, M. Bär, R.E. Goldstein, New J. Phys. 15, 045016 (2013)

    ADS  Google Scholar 

  66. D. Saintillan, M. Shelley, Phys. Rev. Lett. 100, 178103 (2008)

    ADS  Google Scholar 

  67. D. Saintillan, M. Shelley, Phys. Fluids 20, 123304 (2008)

    ADS  Google Scholar 

  68. A. Alizadeh Pahlavan, D. Saintillan, Phys. Fluids 23, 011901 (2011)

    ADS  Google Scholar 

  69. B. Ezhilan, A. Alizadeh Pahlavan, D. Saintillan, Phys. Fluids 24, 091701 (2012)

    ADS  Google Scholar 

  70. E. Lushi, R.E. Goldstein, M.J. Shelley, Phys. Rev. E 86, 040902 (2012)

    ADS  Google Scholar 

  71. B. Ezhilan, M.J. Shelley, D. Saintillan, Phys. Fluids 25, 070607 (2013)

    ADS  Google Scholar 

  72. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986)

    Google Scholar 

  73. D.L. Koch, E.S.G. Shaqfeh, J. Fluid Mech. 209, 521 (1989)

    ADS  MATH  MathSciNet  Google Scholar 

  74. G. Subramanian, D.L. Koch, J. Fluid Mech. 632, 359 (2009)

    ADS  MATH  MathSciNet  Google Scholar 

  75. G.B. Jeffery, Proc. R. Soc. Lond. A 102, 161 (1922)

    ADS  Google Scholar 

  76. F.P. Bretherton, J. Fluid Mech. 14, 284 (1962)

    ADS  MATH  MathSciNet  Google Scholar 

  77. G.K. Batchelor, J. Fluid Mech. 44, 419 (1970)

    ADS  MATH  MathSciNet  Google Scholar 

  78. M. Garcia, S. Berti, P. Peyla, S. Rafaï, Phys. Rev. E 83, 035301 (2011)

    ADS  Google Scholar 

  79. H. Brenner, J. Colloid Interface Sci. 71, 189 (1979)

    Google Scholar 

  80. H. Brenner, PhysicoChem. Hydrodyn. 1, 91 (1980)

    Google Scholar 

  81. H.C. Berg, Random Walks in Biology (Princeton University Press, Princeton, 1983)

    Google Scholar 

  82. P. Underhill, J. Hernández-Ortiz, M. Graham, Phys. Rev. Lett. 100, 248101 (2008)

    ADS  Google Scholar 

  83. E.J. Hinch, L.G. Leal, J. Fluid Mech. 76, 187 (1976)

    ADS  MATH  Google Scholar 

  84. J.H. Irving, J.G. Kirkwood, J. Chem. Phys. 18, 817 (1950)

    ADS  MathSciNet  Google Scholar 

  85. G.K. Batchelor, J. Fluid Mech. 41, 545 (1970)

    ADS  MATH  MathSciNet  Google Scholar 

  86. C. Hohenegger, M. Shelley, in New Trends in the Physics and Mechanics of Biological Systems, ed. by M. Ben-Amar, A. Goriely, M. Muller, L. Cugliandolo (Oxford University Press, Oxford, 2011)

    Google Scholar 

  87. M. Doi, S.F. Edwards, J. Chem. Soc. Faraday Trans. II 74, 560 (1978)

    Google Scholar 

  88. X. Chen, J.G. Liu, J. Differ. Equat. 254, 2764 (2013)

    ADS  MATH  Google Scholar 

  89. A. Baskaran, M.C. Marchetti, Proc. Natl. Acad. Sci. USA 106, 15567 (2009)

    ADS  Google Scholar 

  90. C. Hohenegger, M. Shelley, Phys. Rev. E 81, 046311 (2010)

    ADS  MathSciNet  Google Scholar 

  91. M. Betterton, A.S. Jhang, M. Shelley, In preparation (2014)

    Google Scholar 

  92. J.E. Butler, E.S.G. Shaqfeh, J. Fluid Mech. 468, 205 (2002)

    ADS  MATH  Google Scholar 

  93. A. Baskaran, M.C. Marchetti, J. Stat. Mech.: Theor. Exp. 2010, 04019 (2010)

    Google Scholar 

  94. L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949)

    ADS  Google Scholar 

  95. W. Maier, A. Saupe, Z. Naturforsch. 13, 564 (1958)

    ADS  Google Scholar 

  96. P.D. Cobb, J.E. Butler, J. Chem. Phys. 123, 054908 (2005)

    ADS  Google Scholar 

  97. E.S.G. Shaqfeh, G.H. Fredrickson, Phys. Fluids A 2, 7 (1990)

    ADS  MATH  MathSciNet  Google Scholar 

  98. P.R. Nott, E. Guazzelli, O. Pouliquen, Phys. Fluids 23, 043304 (2011)

    ADS  Google Scholar 

  99. A.P. Berke, L. Turner, H.C. Berg, E. Lauga, Phys. Rev. Lett. 101, 038102 (2008)

    ADS  Google Scholar 

  100. G. Li, J.X. Tang, Phys. Rev. Lett. 103, 078101 (2009)

    ADS  Google Scholar 

  101. J. Hill, O. Kalkanci, J.L. McMurry, H. Koser, Phys. Rev. Lett. 98, 068101 (2007)

    ADS  Google Scholar 

  102. V. Kantsler, J. Dunkel, M. Polin, R.E. Goldstein, Proc. Natl. Acad. Sci. USA 110, 1187 (2013)

    ADS  Google Scholar 

  103. E. Altshuler, G. Miño, C. Perez-Penichet, L. del Rio, A. Lindner, A. Rousselet, E. Clément, Soft Matter 9, 1864 (2013)

    ADS  Google Scholar 

  104. G. Miño, T.E. Mallouk, T. Darnige, M. Hoyos, J. Dauchet, J. Dunstan, R. Soto, Y. Wang, A. Rousselet, E. Clément, Phys. Rev. Lett. 106, 048102 (2011)

    ADS  Google Scholar 

  105. E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, J. Biophys. 90, 400 (2006)

    Google Scholar 

  106. F.G. Woodhouse, R.E. Goldstein, Phys. Rev. Lett. 109, 168105 (2012)

    ADS  Google Scholar 

  107. H. Wioland, F.G. Woodhouse, J. Dunkel, J.O. Kessler, R.E. Goldstein, Phys. Rev. Lett. 110, 268102 (2013)

    ADS  Google Scholar 

  108. A. Costanzo, R. Di Leonardo, G. Ruocco, L. Angelani, J. Phys.: Condens. Matter 24, 065101 (2012)

    ADS  Google Scholar 

  109. S. Chilukuri, C.H. Collins, P.T. Underhill, J. Phys.: Condens. Matter 26, 115101 (2014)

    Google Scholar 

  110. S.E. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)

    MATH  MathSciNet  Google Scholar 

  111. R. Voituriez, J.F. Joanny, J. Prost, Europhys. Lett. 70, 404 (2005)

    ADS  Google Scholar 

  112. S.A. Edwards, J.M. Yeomans, Europhys. Lett. 85, 18008 (2009)

    ADS  Google Scholar 

  113. M. Ravnik, J.M. Yeomans, Phys. Rev. Lett. 110, 026001 (2013)

    ADS  Google Scholar 

  114. D. Takagi, J. Palacci, A. Braunschweig, M. Shelley, J. Zhang, Soft Matter 10, 1784 (2014)

    ADS  Google Scholar 

  115. R.L. Schiek, E.S.G. Shaqfeh, J. Fluid Mech. 296, 271 (1995)

    ADS  MATH  MathSciNet  Google Scholar 

  116. B. Ezhilan, D. Saintillan, Submitted (2014)

    Google Scholar 

  117. T. Kaya, H. Koser, Biophys. J. 102, 1514 (2012)

    Google Scholar 

  118. Y. Shen, A. Siryapon, S. Lecuyer, Z. Gitai, H.A. Stone, Biophys. J. 103, 146 (2012)

    ADS  Google Scholar 

  119. R.W. Nash, R. Adhikari, J. Tailleur, M.E. Cates, Phys. Rev. Lett. 104, 258101 (2010)

    ADS  Google Scholar 

  120. A. Jhang, M. Shelley, In preparation (2014)

    Google Scholar 

  121. T. Brotto, J.B. Caussin, E. Lauga, D. Bartolo, Phys. Rev. Lett. 110, 038101 (2013)

    ADS  Google Scholar 

  122. N. Liron, S. Mochon, J. Eng. Math. 10, 287 (1976)

    MATH  Google Scholar 

  123. S. Bhattacharya, J. BÅ‚awzdziewicz, E. Wajnryb, J. Comp. Phys. 212, 718 (2006)

    ADS  MATH  Google Scholar 

  124. A. Lefauve, D. Saintillan, Phys. Rev. E 89, 021002 (2014)

    ADS  Google Scholar 

  125. A.C.H. Tsang, E. Kanso, Flagella-induced transitions in the collective behavior of confined microswimmers. Phys. Rev. E 90, 021001(R) (2014)

    Google Scholar 

  126. H.C. Berg, D.A. Brown, Nature 239, 500 (1972)

    ADS  Google Scholar 

  127. G. Subramanian, D.L. Koch, S.R. Fitzgibbon, Phys. Fluids 23, 041901 (2011)

    ADS  Google Scholar 

  128. T. Kasyap, D. Koch, Phys. Rev. Lett. 108, 038101 (2012)

    ADS  Google Scholar 

  129. T. Kasyap, D. Koch, J. Fluid Mech. 741, 619 (2014)

    ADS  MathSciNet  Google Scholar 

  130. E.O. Budrene, H.C. Berg, Nature 349, 630 (1991)

    ADS  Google Scholar 

  131. B.L. Bassler, Cell 109, 421 (2002)

    Google Scholar 

  132. S. Park, P.M. Wolanin, E.A. Yuzbashyan, P. Silberzan, J.B. Stock, R.H. Austin, Science 301, 188 (2003)

    Google Scholar 

  133. E.F. Keller, L.A. Segel, J. Theor. Biol. 30, 225 (1971)

    MATH  Google Scholar 

  134. J.R. Vélez-Cordero, E. Lauga, J Non-Newtonian Fluid Mech 199, 37 (2013)

    Google Scholar 

  135. Y. Bozorgi, P. Underhill, Phys. Rev. E 84, 061901 (2011)

    ADS  Google Scholar 

  136. Y. Bozorgi, P. Underhill, J. Rheo. 57, 511 (2013)

    ADS  Google Scholar 

  137. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids (Wiley-Interscience, 1987)

    Google Scholar 

  138. K.J. Helmke, R. Heald, J.D. Wilbur, Int Rev Cell Mol Biol 306, 83 (2013)

    Google Scholar 

  139. A. Kimura, S. Onami, Dev Cell 8, 765 (2005)

    Google Scholar 

  140. C.S. Peskin, Acta numerica 11, 479 (2002)

    Google Scholar 

  141. K. Kimura, A. Kimura, Proc. Natl. Acad. Sci. USA 108, 137 (2011)

    ADS  Google Scholar 

  142. T. Gao, R. Blackwell, M. Glaser, M. Betterton, M. Shelley, Submitted (2014)

    Google Scholar 

  143. T. Surrey, F. Nédélec, S. Leibler, E. Karsenti, Science 292, 1167 (2001)

    ADS  Google Scholar 

  144. L. Giomi, M. Bowick, X. Ma, M. Marchetti, Phys. Rev. Lett. 110, 228101 (2013)

    ADS  Google Scholar 

  145. S. Thampi, R. Golestanian, J. Yeomans, Phys. Rev. Lett. 111, 118101 (2013)

    ADS  Google Scholar 

  146. H. Masoud, M. Shelley, Phys. Rev. Lett. 112, 128304 (2014)

    ADS  Google Scholar 

  147. J. Wang, Nanomachines: Fundamentals and Applications (Wiley, NewYork, 2013)

    Google Scholar 

  148. J.L. Moran, P.M. Wheat, J.D. Posner, Phys. Rev. E 81, 065302 (2010)

    ADS  Google Scholar 

  149. Y. Hong, N.M. Blackman, N.D. Kopp, A. Sen, D. Velegol, Phys. Rev. Lett. 99, 178103 (2007)

    ADS  Google Scholar 

  150. Y. Hong, D. Velegol, N. Chaturvedi, A. Sen, Phys. Chem. Chem. Phys. 12, 1423 (2010)

    Google Scholar 

  151. H. Masoud, H.A. Stone, J. Fluid Mech. 741, R4 (2014)

    ADS  MathSciNet  Google Scholar 

  152. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 74, 1226 (1995)

    ADS  Google Scholar 

  153. D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Jahresber. Deutsch. Math.-Verein. 105, 103–165 (2003)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgment

We thank our many students and postdocs that have worked with us on the topic of active suspensions and materials. We also much appreciate the editorial patience extended to us during the preparation of this chapter. DS acknowledges the support of NSF grants DMS-0920931 and CBET-1150590 (CAREER). MJS acknowledges the support of NSF grants DMR-0820341 (NYU MRSEC), DMS-0920930, DOE grant DE-FG02-88ER25053, and NIH grant R01 GM104976-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Saintillan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saintillan, D., Shelley, M.J. (2015). Theory of Active Suspensions. In: Spagnolie, S. (eds) Complex Fluids in Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2065-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2065-5_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2064-8

  • Online ISBN: 978-1-4939-2065-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics