Skip to main content

Computational and Modeling Aspects of RTK Networks

  • Chapter
  • First Online:
  • 1903 Accesses

Abstract

Receptor tyrosine kinases, along with G protein-coupled receptors and the group of cytokine receptors, transmit a great majority of extracellular cues to the cytoplasm and nucleus of target cells. Here we focus on one subgroup of receptor tyrosine kinases, whose prototype is the epidermal growth factor receptor (EGFR). Due to ligand-induced homo- and heterodimerization by EGFR (also called ERBB1) and other family members, extracellular signals are processed by a layered signaling network, which generates a complex, time-dependent output. Mass-action models well describe the emergent behavior of the network, but their establishment requires detailed experimental data. For example, mass-action models incorporate feedback regulatory loops and explain ligand-specific rewiring of the network, as well as the emergence of ultrasensitivity. Other computational models are employed when the volume of experimental data is limited. Both mass-action models and the more abstractive models help uncover fragile nodes amenable for therapeutic intervention. Likewise, co-option of network’s robustness by disease states might be modeled and help understand sensitivity, as well as resistance, to drugs targeting signal transduction by the ERBB and related networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7:505–16.

    Article  CAS  PubMed  Google Scholar 

  2. Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2005;1:2005.0010.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Alon U. An introduction to systems biology: design principles of biological circuits. Boca Raton, FL: CRC Press, Taylor and Francis; 2006.

    Google Scholar 

  4. Bhalla US, Iyengar R. Functional modules in biological signalling networks. Novartis Found Symp. 2001;239:4–13. discussion 13–15, 45–51.

    Article  CAS  PubMed  Google Scholar 

  5. Kitano H. Biological robustness. Nat Rev Genet. 2004;5:826–37.

    Article  CAS  PubMed  Google Scholar 

  6. Nakakuki T, Birtwistle MR, Saeki Y, Yumoto N, Ide K, Nagashima T, Brusch L, Ogunnaike BA, Okada-Hatakeyama M, Kholodenko BN. Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell. 2010;141:884–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Birtwistle MR, Hatakeyama M, Yumoto N, Ogunnaike BA, Hoek JB, Kholodenko BN. Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses. Mol Syst Biol. 2007;3:144.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, Sorger PK. Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol. 2009;5:239.

    PubMed Central  PubMed  Google Scholar 

  9. Hatakeyama M, Kimura S, Naka T, Kawasaki T, Yumoto N, Ichikawa M, Kim JH, Saito K, Saeki M, Shirouzu M, et al. A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem J. 2003;373:451–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kholodenko BN, Demin OV, Moehren G, Hoek JB. Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem. 1999;274:30169–81.

    Article  CAS  PubMed  Google Scholar 

  11. Purvis J, Ilango V, Radhakrishnan R. Role of network branching in eliciting differential short-term signaling responses in the hypersensitive epidermal growth factor receptor mutants implicated in lung cancer. Biotechnol Prog. 2008;24:540–53.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol. 2002;20:370–5.

    Article  PubMed  Google Scholar 

  13. Shin SY, Rath O, Choo SM, Fee F, McFerran B, Kolch W, Cho KH. Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. J Cell Sci. 2009;122:425–35.

    Article  CAS  PubMed  Google Scholar 

  14. Tyson JJ, Chen K, Novak B. Network dynamics and cell physiology. Nat Rev Mol Cell Biol. 2001;2:908–16.

    Article  CAS  PubMed  Google Scholar 

  15. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK. Physicochemical modelling of cell signalling pathways. Nat Cell Biol. 2006;8:1195–203.

    Article  CAS  PubMed  Google Scholar 

  16. Avraham R, Yarden Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol. 2011;12:104–17.

    Article  CAS  PubMed  Google Scholar 

  17. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003;284:31–53.

    Article  CAS  PubMed  Google Scholar 

  18. Hlavacek WS, Faeder JR, Blinov ML, Perelson AS, Goldstein B. The complexity of complexes in signal transduction. Biotechnol Bioeng. 2003;84:783–94.

    Article  CAS  PubMed  Google Scholar 

  19. Lewitzky M, Simister PC, Feller SM. Beyond ‘furballs’ and ‘dumpling soups’ - towards a molecular architecture of signaling complexes and networks. FEBS Lett. 2012;586:2740–50.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics. 2005;4:1240–50.

    Article  CAS  PubMed  Google Scholar 

  21. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS. A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. Biosystems. 2006;83:136–51.

    Article  CAS  PubMed  Google Scholar 

  22. Snoep JL, Bruggeman F, Olivier BG, Westerhoff HV. Towards building the silicon cell: a modular approach. Biosystems. 2006;83:207–16.

    Article  CAS  PubMed  Google Scholar 

  23. Resat H, Ewald JA, Dixon DA, Wiley HS. An integrated model of epidermal growth factor receptor trafficking and signal transduction. Biophys J. 2003;85:730–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, Lavi S, Seger R, Ratzkin BJ, Sela M, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996;15:2452–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Hendriks BS, Orr G, Wells A, Wiley HS, Lauffenburger DA. Parsing ERK activation reveals quantitatively equivalent contributions from epidermal growth factor receptor and HER2 in human mammary epithelial cells. J Biol Chem. 2005;280:6157–69.

    Article  CAS  PubMed  Google Scholar 

  26. Schulze A, Lehmann K, Jefferies HB, McMahon M, Downward J. Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev. 2001;15:981–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Schafer B, Gschwind A, Ullrich A. Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene. 2004;23:991–9.

    Article  PubMed  Google Scholar 

  28. Chang CP, Lazar CS, Walsh BJ, Komuro M, Collawn JF, Kuhn LA, Tainer JA, Trowbridge IS, Farquhar MG, Rosenfeld MG, et al. Ligand-induced internalization of the epidermal growth factor receptor is mediated by multiple endocytic codes analogous to the tyrosine motif found in constitutively internalized receptors. J Biol Chem. 1993;268:19312–20.

    CAS  PubMed  Google Scholar 

  29. Opresko LK, Chang CP, Will BH, Burke PM, Gill GN, Wiley HS. Endocytosis and lysosomal targeting of epidermal growth factor receptors are mediated by distinct sequences independent of the tyrosine kinase domain. J Biol Chem. 1995;270:4325–33.

    Article  CAS  PubMed  Google Scholar 

  30. Wiley HS, Herbst JJ, Walsh BJ, Lauffenburger DA, Rosenfeld MG, Gill GN. The role of tyrosine kinase activity in endocytosis, compartmentation, and down-regulation of the epidermal growth factor receptor. J Biol Chem. 1991;266:11083–94.

    CAS  PubMed  Google Scholar 

  31. Felder S, Miller K, Moehren G, Ullrich A, Schlessinger J, Hopkins CR. Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell. 1990;61:623–34.

    Article  CAS  PubMed  Google Scholar 

  32. French AR, Tadaki DK, Niyogi SK, Lauffenburger DA. Intracellular trafficking of epidermal growth factor family ligands is directly influenced by the pH sensitivity of the receptor/ligand interaction. J Biol Chem. 1995;270:4334–40.

    Article  CAS  PubMed  Google Scholar 

  33. Howe CL, Mobley WC. Signaling endosome hypothesis: a cellular mechanism for long distance communication. J Neurobiol. 2004;58:207–16.

    Article  PubMed  Google Scholar 

  34. Hendriks BS, Opresko LK, Wiley HS, Lauffenburger D. Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo- and heterodimers depends on relative HER2 levels. J Biol Chem. 2003;278:23343–51.

    Article  CAS  PubMed  Google Scholar 

  35. Shankaran H, Wiley HS, Resat H. Modeling the effects of HER/ErbB1-3 coexpression on receptor dimerization and biological response. Biophys J. 2006;90:3993–4009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell. 1999;4:1029–40.

    Article  CAS  PubMed  Google Scholar 

  37. Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY, Beguinot L, Geiger B, Yarden Y. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 1998;12:3663–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Gallagher ED, Gutowski S, Sternweis PC, Cobb MH. RhoA binds to the amino terminus of MEKK1 and regulates its kinase activity. J Biol Chem. 2004;279:1872–7.

    Article  CAS  PubMed  Google Scholar 

  39. Ung CY, Li H, Ma XH, Jia J, Li BW, Low BC, Chen YZ. Simulation of the regulation of EGFR endocytosis and EGFR-ERK signaling by endophilin-mediated RhoA-EGFR crosstalk. FEBS Lett. 2008;582:2283–90.

    Article  CAS  PubMed  Google Scholar 

  40. Tarcic G, Boguslavsky SK, Wakim J, Kiuchi T, Liu A, Reinitz F, Nathanson D, Takahashi T, Mischel PS, Ng T, et al. An unbiased screen identifies DEP-1 tumor suppressor as a phosphatase controlling EGFR endocytosis. Curr Biol. 2009;19:1788–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995;80:179–85.

    Article  CAS  PubMed  Google Scholar 

  42. Lessor T, Yoo JY, Davis M, Hamburger AW. Regulation of heregulin beta1-induced differentiation in a human breast carcinoma cell line by the extracellular-regulated kinase (ERK) pathway. J Cell Biochem. 1998;70:587–95.

    Article  CAS  PubMed  Google Scholar 

  43. Nagashima T, Shimodaira H, Ide K, Nakakuki T, Tani Y, Takahashi K, Yumoto N, Hatakeyama M. Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation. J Biol Chem. 2007;282:4045–56.

    Article  CAS  PubMed  Google Scholar 

  44. Santos SD, Verveer PJ, Bastiaens PI. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol. 2007;9:324–30.

    Article  CAS  PubMed  Google Scholar 

  45. Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, Hoek JB. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci U S A. 2002;99:12841–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Huang CY, Ferrell Jr JE. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1996;93:10078–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Bhalla US, Ram PT, Iyengar R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science. 2002;297:1018–23.

    Article  CAS  PubMed  Google Scholar 

  48. Ferrell Jr JE. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol. 2002;14:140–8.

    Article  CAS  PubMed  Google Scholar 

  49. Markevich NI, Hoek JB, Kholodenko BN. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol. 2004;164:353–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Moelling K, Schad K, Bosse M, Zimmermann S, Schweneker M. Regulation of Raf-Akt Cross-talk. J Biol Chem. 2002;277:31099–106.

    Article  CAS  PubMed  Google Scholar 

  51. Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999;286:1741–4.

    Article  CAS  PubMed  Google Scholar 

  52. Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F, Tarcic G, Siwak D, Lahad J, Jacob-Hirsch J, et al. A module of negative feedback regulators defines growth factor signaling. Nat Genet. 2007;39:503–12.

    Article  CAS  PubMed  Google Scholar 

  53. Pouyssegur J, Lenormand P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Eur J Biochem. 2003;270:3291–9.

    Article  CAS  PubMed  Google Scholar 

  54. Brondello JM, McKenzie FR, Sun H, Tonks NK, Pouyssegur J. Constitutive MAP kinase phosphatase (MKP-1) expression blocks G1 specific gene transcription and S-phase entry in fibroblasts. Oncogene. 1995;10:1895–904.

    CAS  PubMed  Google Scholar 

  55. Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007;8:450–61.

    Article  CAS  PubMed  Google Scholar 

  56. Murphy LO, Blenis J. MAPK signal specificity: the right place at the right time. Trends Biochem Sci. 2006;31:268–75.

    Article  CAS  PubMed  Google Scholar 

  57. Lazzara MJ, Lauffenburger DA. Quantitative modeling perspectives on the ErbB system of cell regulatory processes. Exp Cell Res. 2009;315:717–25.

    Article  CAS  PubMed  Google Scholar 

  58. Avraham R, Sas-Chen A, Manor O, Steinfeld I, Shalgi R, Tarcic G, Bossel N, Zeisel A, Amit I, Zwang Y, et al. EGF decreases the abundance of microRNAs that restrain oncogenic transcription factors. Sci Signal. 2010;3:ra43.

    PubMed  Google Scholar 

  59. Amit I, Wides R, Yarden Y. Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy. Mol Syst Biol. 2007;3:151.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Shankaran H, Ippolito DL, Chrisler WB, Resat H, Bollinger N, Opresko LK, Wiley HS. Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor. Mol Syst Biol. 2009;5:332.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Sturm OE, Orton R, Grindlay J, Birtwistle M, Vyshemirsky V, Gilbert D, Calder M, Pitt A, Kholodenko B, Kolch W. The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Sci Signal. 2010;3:ra90.

    CAS  PubMed  Google Scholar 

  62. Xiong W, Ferrell Jr JE. A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature. 2003;426:460–5.

    Article  CAS  PubMed  Google Scholar 

  63. Csete ME, Doyle JC. Reverse engineering of biological complexity. Science. 2002;295:1664–9.

    Article  CAS  PubMed  Google Scholar 

  64. Kitano H. The theory of biological robustness and its implication in cancer. Ernst Schering Res Found Workshop. 2007; (61):69.

    Google Scholar 

  65. Carlson JM, Doyle J. Complexity and robustness. Proc Natl Acad Sci U S A. 2002;99 Suppl 1:2538–45.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411:41–2.

    Article  CAS  PubMed  Google Scholar 

  67. Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, Giles FJ. Targeting HSP90 for cancer therapy. Br J Cancer. 2009;100:1523–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Suenaga A, Kiyatkin AB, Hatakeyama M, Futatsugi N, Okimoto N, Hirano Y, Narumi T, Kawai A, Susukita R, Koishi T, et al. Tyr-317 phosphorylation increases Shc structural rigidity and reduces coupling of domain motions remote from the phosphorylation site as revealed by molecular dynamics simulations. J Biol Chem. 2004;279:4657–62.

    Article  CAS  PubMed  Google Scholar 

  69. Brightman FA, Fell DA. Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett. 2000;482:169–74.

    Article  CAS  PubMed  Google Scholar 

  70. Shvartsman SY, Muratov CB, Lauffenburger DA. Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. Development. 2002;129:2577–89.

    CAS  PubMed  Google Scholar 

  71. Hautaniemi S, Kharait S, Iwabu A, Wells A, Lauffenburger DA. Modeling of signal-response cascades using decision tree analysis. Bioinformatics. 2005;21:2027–35.

    Article  CAS  PubMed  Google Scholar 

  72. Monine MI, Berezhkovskii AM, Joslin EJ, Wiley HS, Lauffenburger DA, Shvartsman SY. Ligand accumulation in autocrine cell cultures. Biophys J. 2005;88:2384–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127:635–48.

    Article  CAS  PubMed  Google Scholar 

  74. Borisov N, Aksamitiene E, Kiyatkin A, Legewie S, Berkhout J, Maiwald T, Kaimachnikov NP, Timmer J, Hoek JB, Kholodenko BN. Systems-level interactions between insulin-EGF networks amplify mitogenic signaling. Mol Syst Biol. 2009;5:256.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Schoeberl B, Pace EA, Fitzgerald JB, Harms BD, Xu L, Nie L, Linggi B, Kalra A, Paragas V, Bukhalid R, et al. Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal. 2009;2:ra31.

    PubMed  Google Scholar 

  76. Ciaccio MF, Wagner JP, Chuu CP, Lauffenburger DA, Jones RB. Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Methods. 2010;7:148–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Naegle KM, White FM, Lauffenburger DA, Yaffe MB. Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions. Mol Biosyst. 2012;8:2771–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Naegle KM, Welsch RE, Yaffe MB, White FM, Lauffenburger DA. MCAM: multiple clustering analysis methodology for deriving hypotheses and insights from high-throughput proteomic datasets. PLoS Comput Biol. 2011;7:e1002119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Maheshwari G, Wells A, Griffith LG, Lauffenburger DA. Biophysical integration of effects of epidermal growth factor and fibronectin on fibroblast migration. Biophys J. 1999;76:2814–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Kharait S, Hautaniemi S, Wu S, Iwabu A, Lauffenburger DA, Wells A. Decision tree modeling predicts effects of inhibiting contractility signaling on cell motility. BMC Syst Biol. 2007;1:9.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Pe’er D. Bayesian network analysis of signaling networks: a primer. Sci STKE. 2005;2005:pl4.

    PubMed  Google Scholar 

  82. Sachs K, Gifford D, Jaakkola T, Sorger P, Lauffenburger DA. Bayesian network approach to cell signaling pathway modeling. Sci STKE. 2002;2002:pe38.

    PubMed  Google Scholar 

  83. Vinayagam A, Stelzl U, Foulle R, Plassmann S, Zenkner M, Timm J, Assmus HE, Andrade-Navarro MA, Wanker EE. A directed protein interaction network for investigating intracellular signal transduction. Sci Signal. 2011;4:rs8.

    Article  PubMed  Google Scholar 

  84. Alon U, Surette MG, Barkai N, Leibler S. Robustness in bacterial chemotaxis. Nature. 1999;397:168–71.

    Article  CAS  PubMed  Google Scholar 

  85. Xu L, Kikuchi E, Xu C, Ebi H, Ercan D, Cheng KA, Padera R, Engelman JA, Janne PA, Shapiro GI, et al. Combined EGFR/MET or EGFR/HSP90 inhibition is effective in the treatment of lung cancers codriven by mutant EGFR containing T790M and MET. Cancer Res. 2012;72:3302–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer. 2012;12:553–63.

    Article  CAS  PubMed  Google Scholar 

  87. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  CAS  PubMed  Google Scholar 

  88. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2012;9:16–32.

    Article  CAS  Google Scholar 

  89. Baselga J. Targeting tyrosine kinases in cancer: the second wave. Science. 2006;312:1175–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosef Yarden Ph.D. .

Editor information

Editors and Affiliations

Glossary

Autocrine

 Secretion of a ligand that activates a receptor on the secreting cell itself.

Boolean model

 A discrete modeling method that produces a qualitative dynamic description of system behavior.

Emergent behavior

 The complex behavior of a system that arises from functional interactions of simple components.

Endocytosis

 The process of inward folding of the plasma membrane, thereby creating intracellular vesicles that uptake materials from outside a cell.

Fuzzy c-means

 A clustering method where data points are assigned a score for belonging to each cluster. Thus, it enables to identify which data points fit better to particular clusters.

Granularity

 The detailed level of the data included in a model. Higher model’s granularity means that the system is broken up into many smaller parts.

Mitogen-activated protein kinase (MAPK)

 A group of four kinases that are activated in a cascade. The dynamical activation pattern of these kinases leads to diverse cell fates.

Paracrine

 Secretion of a ligand that stimulates adjacent cells.

Self-organizing map

 A computational method based on unsupervised learning that clusters data into groups. Additionally, it is able to graphically present the relationships among different groups.

Species

 Forms of macromolecules, such as protein isoforms originating from RNA splicing, posttransnationally modified proteins and protein complexes.

Ultrasensitivity

 The output response of an enzymatic reaction where, above a certain threshold, a small increase in input causes a large increase in output response. The ultrasensitive stimulus/response curve is steeper than the hyperbolic Michaelis-Menten curve. It enables bistable behavior of signaling networks.

Unsupervised learning

 A computational approach that makes no prior assumptions on data organization. This method might reveal unanticipated biological insights.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Enuka, Y., Feldman, M.E., Yarden, Y. (2015). Computational and Modeling Aspects of RTK Networks. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2053-2_6

Download citation

Publish with us

Policies and ethics