Skip to main content

Penium margaritaceum as a Model Organism for Cell Wall Analysis of Expanding Plant Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1242))

Abstract

The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

AGP:

Arabinogalactan protein

CBM:

Carbohydrate-binding module

CGA:

Charophycean Green Algae

CLSM:

Confocal laser scanning microscope

HG:

Homogalacturonan

LM:

Light microscope

LRW:

London Resin White

PBS:

Phosphate-buffered saline

PBST:

PBS with 1 % Triton-X

Penium:

Penium margaritaceum

PME:

Pectin methyl esterase

RT:

Room temperature

TEM:

Transmission electron microscopy

VPSEM:

Variable pressure scanning electron microscopy

WFLM:

Wide-field fluorescence microscope

WHS:

Sterile Woods Hole medium supplemented with sterile soil extract (Woods Hole Soil)

References

  1. Niklas KJ, Kutschera U (2010) The evolution of the land plant life cycle. New Phytol 185:27–41

    Article  CAS  PubMed  Google Scholar 

  2. Sanderson MJ, Thorne JL, Wikström N et al (2004) Molecular evidence on plant divergence times. Am J Bot 91:1656–1665

    Article  CAS  PubMed  Google Scholar 

  3. Becker B, Marin B (2009) Streptophyte algae and the origin of embryophytes. Ann Bot 103:999–1004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bowman JL (2013) Walkabout on the long branches of plant evolution. Curr Opin Plant Biol 16:70–77

    Article  PubMed  Google Scholar 

  5. Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    Article  CAS  Google Scholar 

  6. Niklas KJ (2004) The cell walls that bind the tree of life. Bioscience 54:831–841

    Article  Google Scholar 

  7. Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675

    Article  CAS  Google Scholar 

  8. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  CAS  PubMed  Google Scholar 

  9. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  CAS  PubMed  Google Scholar 

  10. Harholt J, Suttangkakul A, Vibe Scheller H (2010) Biosynthesis of pectin. Plant Physiol 153:384–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Popper ZA, Tuohy MG (2010) Beyond the green: understanding the evolutionary puzzle of plant and algal cell walls. Plant Physiol 153:373–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Popper ZA, Michel G, Hervé C et al (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–90

    Article  CAS  PubMed  Google Scholar 

  13. Waters E (2003) Molecular adaptation and the origin of land plants. Mol Phylogenet Evol 29:456–463

    Article  CAS  PubMed  Google Scholar 

  14. Domozych DS (2012) The quest for four-dimensional imaging in plant cell biology: it’s just a matter of time. Ann Bot 110:461–474

    Article  PubMed Central  PubMed  Google Scholar 

  15. Sørensen I, Pettolino FA, Bacic A et al (2011) The charophycean green algae provide insights into the early origins of plant cell walls. Plant J 68:201–11

    Article  PubMed  Google Scholar 

  16. Popper ZA (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91:1–12

    Article  CAS  PubMed  Google Scholar 

  17. Eder M, Lütz-Meindl U (2010) Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus. Protoplasma 243:25–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sørensen I, Rose JKC, Doyle JJ et al (2012) The Charophycean green algae as model systems to study plant cell walls and other evolutionary adaptations that gave rise to land plants. Plant Signal Behav 7:1–3

    Article  PubMed Central  PubMed  Google Scholar 

  19. Fangel JU, Ulvskov P, Knox JP et al (2012) Cell wall evolution and diversity. Front Plant Sci 3:152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Leliaert F, Verbruggen H, Zechman FW (2011) Into the deep: new discoveries at the base of the green plant phylogeny. Bioessays 33:683–692

    Article  PubMed  Google Scholar 

  21. Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–56

    Article  PubMed  Google Scholar 

  22. Leliaert F, Smith DR, Moreau H et al (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46

    Article  Google Scholar 

  23. Timme RE, Bachvaroff TR, Delwiche CF (2012) Broad phylogenomic sampling and the sister lineage of land plants. PloS One. 7, e29696

    Google Scholar 

  24. Wodniok S, Brinkmann H, Glöckner G et al (2011) Origin of land plants: do conjugating green algae hold the key? BMC Evol Biol 11:104

    Article  PubMed Central  PubMed  Google Scholar 

  25. Finet C, Timme REE, Delwiche CFF et al (2010) Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Curr Biol 22:1456–1457

    Article  Google Scholar 

  26. Laurin-Lemay S, Brinkmann H, Philippe H (2012) Origin of land plants revisited in the light of sequence contamination and missing data. Curr Biol 22:R593–R594

    Article  CAS  PubMed  Google Scholar 

  27. Finet C, Timme RE, Delwiche CF et al (2010) Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Curr Biol 20:2217–2222

    Article  CAS  PubMed  Google Scholar 

  28. Timme RE, Delwiche CF, Marle F (2012) Erratum: multigene phylogeny of the green and diversification of land plants. Curr Biol 22(15):1456–1457

    Article  PubMed  Google Scholar 

  29. Domozych DS, Brechka H, Britton A et al (2011) Cell wall growth and modulation dynamics in a model unicellular green alga—Penium margaritaceum: live cell labeling with monoclonal antibodies. J Bot. doi. org/10.1155/2011/632165

  30. Domozych DS, Serfis A, Kiemle SN et al (2007) The structure and biochemistry of charophycean cell walls: I. Pectins of Penium margaritaceum. Protoplasma 230:99–115

    Article  CAS  PubMed  Google Scholar 

  31. Liberman LM, Sozzani R, Benfey PN (2012) Integrative systems biology: an attempt to describe a simple weed. Curr Opin Plant Biol 15:162–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wienkoop S, Baginsky S, Weckwerth W (2010) Arabidopsis thaliana as a model organism for plant proteome research. J Proteome 73:2239–2248

    Article  CAS  Google Scholar 

  33. Kato K, Matsumoto T, Koiwai A et al (1972) Liquid suspension culture of tobacco cells. In: Terui G (ed) Fermentation technology today: proceedings of the IVth international fermentation symposium. Society of Fermentation Technology, Kyoto, Japan, pp 689–695

    Google Scholar 

  34. Nagata T, Yasuyuki N, Seiichiro H (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  35. Brook AJ (1981) The biology of desmids. University of California Press, Oakland, CA

    Google Scholar 

  36. Gerrath JF (2003) Conjugating green algae and desmids. In: Wehr, J.D. (ed.) Freshwater Algae of North America: Ecology and Classification. Elsevier Science, San Diego, CA, pp 353–381

    Chapter  Google Scholar 

  37. Domozych DS, Kort S, Benton S et al (2005) The extracellular polymeric substance of the green alga Penium margaritaceum and its role in biofilm formation. Biofilms 2:129

    Article  Google Scholar 

  38. Domozych DS, Lambiasse L, Kiemle SN et al (2009) Cell-wall development and bipolar growth in the desmid Penium margaritaceum (Zygnematophyceae, Streptophyta). Asymmetry in a symmetric world. J Phycol 45:879–893

    Article  CAS  Google Scholar 

  39. Domozych D, Fujimoto C, LaRue T (2013) Polar expansion dynamics in the plant kingdom: a diverse and multifunctional journey on the path to pollen tubes. Planta 2:148–173

    Google Scholar 

  40. Domozych DS (2007) Exopolymer production by the green alga Penium argaritaceum: Implications for biofilm residency. Int J Plant Sci 168:763–774

    Article  CAS  Google Scholar 

  41. Bret-harte MS, Talbott LD (1993) Changes in composition of the outer epidermal cell wall of pea stems during auxin-induced growth. Planta 190:369–378

    CAS  Google Scholar 

  42. Refrégier G, Pelletier S, Jaillard D et al (2004) Interaction between wall deposition and cell elongation in dark-grown hypocotyl cells in Arabidopsis. Plant Physiol 135:959–968

    Article  PubMed Central  PubMed  Google Scholar 

  43. Baker DB, Ray PM (1965) Relation between effects of auxin on cell wall synthesis and cell elongation. Plant Physiol 40:360–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Abe J, Hori S, Tsuchikane Y et al (2011) Stable nuclear transformation of the Closterium peracerosum-strigosum-littorale complex. Plant Cell Physiol 52:1676–1685

    Article  CAS  PubMed  Google Scholar 

  45. Sørensen I, Fei Z, Andreas A, et al. (2014) Stable transformation and reverse genetic analysis of Penium margaritaceum: a platform for studies of Charophycean Green Algae, the immediate ancestors of land plants. Plant J 77:339–351

    Google Scholar 

  46. Nichols HW (1973) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, New York, NY

    Google Scholar 

Download references

Acknowledgments

The authors thank J. Paul Knox (University of Leeds, UK), Marie-Christine Ralet (Institut National de la Recherche Agronomique, Nantes, France), and Harry J. Gilbert (Newcastle University, UK) for monoclonal antibodies and CBMs. We are grateful to Iben Sørensen and Jocelyn K.C. Rose of Cornell University for rewarding and helpful discussion. This work was funded by The Danish Strategic Research Council, The Danish Council for Independent Research, Technology and Production Sciences, and The Villum Foundation’s Young Investigator Programme. Some techniques described here were derived from research funded by the National Science Foundation (USA) grants, NSF-MCB 0919925, NSF-MRI 0922805, and NSF-MRI 0419131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. T. Willats .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rydahl, M.G. et al. (2015). Penium margaritaceum as a Model Organism for Cell Wall Analysis of Expanding Plant Cells. In: Estevez, J. (eds) Plant Cell Expansion. Methods in Molecular Biology, vol 1242. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1902-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1902-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1901-7

  • Online ISBN: 978-1-4939-1902-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics