Skip to main content

Beyond the Island: Epigenetic Biomarkers of Colorectal and Prostate Cancer

  • Protocol
  • First Online:
Book cover Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1238))

Abstract

Epigenetic dysregulation is a common feature across all cancer types. Epigenetic mechanisms, from DNA methylation to histone modifications, allow for a vast number of cellular phenotypes to be created from the same genetic material. Just as certain genetic changes play a key role in tumor initiation and progression, epigenetic changes may also set the course of tumor development and be required for malignant transformation. The most frequently studied epigenetic changes investigated thus far are global genomic DNA hypomethylation along with specific hypermethylation, predominantly at promoter CpG islands of tumor suppressor genes. In addition to DNA methylation changes at CpG islands, there is an abundance of other epigenetic alterations occurring within cancer cells including DNA methylation alterations outside of CpG islands, non-CpG methylation, changes in cytosine oxidative species (hydroxymethylcytosine, formylcytosine, carboxylcytosine) levels, and histone modifications. This chapter examines epigenetic alterations beyond the island, and summarizes recent findings in DNA-based epigenetic regulation of the two most commonly diagnosed cancers in the Western world: colorectal cancer and prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    PubMed  Google Scholar 

  3. Day FL, Jorissen RN, Lipton L, Mouradov D, Sakthianandeswaren A, Christie M, Li S, Tsui C, Tie J, Desai J, Xu ZZ, Molloy P, Whitehall V, Leggett BA, Jones IT, McLaughlin S, Ward RL, Hawkins NJ, Ruszkiewicz AR, Moore J, Busam D, Zhao Q, Strausberg RL, Gibbs P, Sieber OM (2013) PIK3CA and PTEN gene and exon mutation-specific clinicopathological and molecular associations in colorectal cancer. Clin Cancer Res 19:3285–3296

    CAS  PubMed  Google Scholar 

  4. Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337

    Google Scholar 

  5. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    CAS  PubMed  Google Scholar 

  6. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96:8681–8686

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Li X, Yao X, Wang Y, Hu F, Wang F, Jiang L, Liu Y, Wang D, Sun G, Zhao Y (2013) MLH1 promoter methylation frequency in colorectal cancer patients and related clinicopathological and molecular features. PLoS One 8:e590064

    Google Scholar 

  8. Lochhead P, Kuchiba A, Imamura Y, Liao X, Yamauchi M, Nishihara R, Qian ZR, Morikawa T, Shen J, Meyerhardt JA, Fuchs CS, Ogino S (2013) Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J Natl Cancer Inst 105:1151–1156

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Pino MS, Chung DC (2011) Microsatellite instability in the management of colorectal cancer. Expert Rev Gastroenterol Hepatol 5:385–399

    PubMed  Google Scholar 

  10. Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, Hamilton SR, Laurent-Puig P, Gryfe R, Shepherd LE, Tu D, Redston M, Gallinger S (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR, French AJ, Kabat B, Foster NR, Torri V, Ribic C, Grothey A, Moore M, Zaniboni A, Seitz JF, Sinicrope F, Gallinger S (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 28:3219–3226

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Bae JM, Kim JH, Cho NY, Kim TY, Kang GH (2013) Prognostic implication of the CpG island methylator phenotype in colorectal cancers depends on tumor location. Br J Cancer 109:1004–1012

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Lee S, Cho NY, Choi M, Yoo EJ, Kim JH, Kang GH (2008) Clinicopathological features of CpG island methylator phenotype-positive colorectal cancer and its adverse prognosis in relation to KRAS/BRAF mutation. Pathol Int 58:104–113

    CAS  PubMed  Google Scholar 

  14. Abate-Shen C, Shen MM, Gelmann E (2008) Integrating differentiation and cancer: the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation 76:717–727

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Yoshimoto M, Joshua AM, Cunha IW, Coudry RA, Fonseca FP, Ludkovski O, Zielenska M, Soares FA, Squire JA (2008) Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol 21:1451–1460

    CAS  PubMed  Google Scholar 

  16. Yao Y, Wang H, Li B, Tang Y (2014) Evaluation of the TMPRSS2:ERG fusion for the detection of prostate cancer: a systematic review and meta-analysis. Tumour Biol 35(3):2157–2166

    CAS  PubMed  Google Scholar 

  17. Sethi S, Kong D, Land S, Dyson G, Sakr WA, Sarkar FH (2013) Comprehensive molecular oncogenomic profiling and miRNA analysis of prostate cancer. Am J Transl Res 5:200–211

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, Minasian LM, Ford LG, Lippman SM, Crawford ED, Crowley JJ, Coltman CA Jr (2004) Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med 27:2239–2246

    Google Scholar 

  19. Thompson IM, Ankerst DP, Chi C, Lucia MS, Goodman PJ, Crowley JJ, Parnes HL, Coltman CA Jr (2005) Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA 294:66–70

    CAS  PubMed  Google Scholar 

  20. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group (2013) Recommendations from the EGAPP Working Group does PCA3 testing for the diagnosis and management of prostate cancer improve patient health outcomes. Genet Med 16(4):338–346

    Google Scholar 

  21. Bernacki KD, Fields KL, Roh MH (2014) The utility of PSMA and PSA immunohistochemistry in the cytologic diagnosis of metastatic prostate carcinoma. Diagn Cytopathol 42(7):570–575

    PubMed  Google Scholar 

  22. Ristau BT, O’Keefe DS, Bacich DJ (2014) The prostate-specific membrane antigen: lessons and current clinical implications from 20 years of research. Urol Oncol 32(3):272–279

    PubMed  Google Scholar 

  23. Bird A, Taggart M, Frommer M, Miller OJ, Macleod D (1985) A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40:91–99

    CAS  PubMed  Google Scholar 

  24. Gopalakrishnan S, Sullivan BA, Trazzi S, Della Valle G, Robertson KD (2009) DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions. Hum Mol Genet 18:3178–3193

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Girard A, Hannon GJ (2008) Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol 18:136–148

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, Noushmehr H, Lange CP, van Dijk CM, Tollenaar RA, Van Den Berg D, Laird PW (2012) Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 44:40–46

    CAS  Google Scholar 

  27. Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455

    CAS  PubMed  Google Scholar 

  28. Baba Y, Nosho K, Shima K, Huttenhower C, Tanaka N, Hazra A, Giovannucci EL, Fuchs CS, Ogino S (2010) Hypomethylation of the IGF2 DMR in colorectal tumors, detected by bisulfite pyrosequencing is associated with poor prognosis. Gastroenterology 139:1855–1864

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Belkhiri A, El-Rifai W (2014) 5-Methylcytosine hydroxylation-mediated LINE-1 hypomethylation: a novel mechanism of proto-oncogenes activation in colorectal cancer? Gut 63:538–539

    CAS  PubMed  Google Scholar 

  30. Yang B, Sun H, Lin W, Hou W, Li H, Zhang L, Li F, Gu Y, Song Y, Li Q, Zhang F (2013) Evaluation of global DNA hypomethylation in human prostate cancer and prostatic intraepithelial neoplasm tissues by immunohistochemistry. Urol Oncol 31:628–634

    CAS  PubMed  Google Scholar 

  31. Wang Q, Williamson M, Bott S, Brookman-Amissah N, Freeman A, Nariculam J, Hubank MJ, Ahmed A, Masters JR (2007) Hypomethylation on WNT5A, CRIP1, and S100P in prostate cancer. Oncogene 26:6560–6565

    CAS  PubMed  Google Scholar 

  32. Bert SA, Robinson MD, Strbenac D, Statham AL, Song JZ, Hulf T, Sutherland RL, Coolen MW, Stirzaker C, Clark SJ (2013) Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell 23:9–22

    CAS  PubMed  Google Scholar 

  33. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    CAS  PubMed  Google Scholar 

  34. Giannoukakis N, Deal C, Paquette J, Goodyer CG, Polychronakos C (1993) Parental genomic imprinting of the human IGF2 gene. Nat Genet 4:98–101

    CAS  PubMed  Google Scholar 

  35. Bala Tannan N, Brahmachary M, Garg P, Borel C, Alnefaie R, Watson CT, Thomas NS, Sharp AJ (2014) DNA methylation profiling in X;autosome translocations supports a role for L1 repeats in the spread of X chromosome inactivation. Hum Mol Genet 23(5):1224–1236

    CAS  PubMed  Google Scholar 

  36. Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y, Hernandez NS, Chen X, Ahmed S, Konishi K, Hamilton SR, Issa JP (2007) Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A 104:18654–18659

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H, Simms L, Barker M, Leggett B, Levine J, Kim M, French AJ, Thibodeau SN, Jass J, Haile R, Laird PW (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38:787–793

    CAS  PubMed  Google Scholar 

  38. Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk CM, Tollenaar RA, Laird PW (2012) Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 22:271–282

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Tahara T, Yamamoto E, Madireddi P, Suzuki H, Maruyama R, Chung W, Garriga J, Jelinek J, Yamano HO, Sugai T, Kondo Y, Toyota M, Issa JP, Estecio MR (2013) Colorectal carcinomas with CpG island methylator phenotype 1 frequently contain mutations in chromatin regulators. Gastroenterology 146:530–538

    PubMed  Google Scholar 

  40. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Maruyama R, Toyooka S, Toyooka KO, Virmani AK, Zochbauer-Muller S, Farinas AJ, Minna JD, McConnell J, Frenkel EP, Gazdar AF (2002) Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res 8:514–519

    CAS  PubMed  Google Scholar 

  42. Maruyama R, Toyooka S, Toyooka KO, Virmani AK, Zochbauer-Muller S, Farinas AJ, Vakar-Lopez F, Minna JD, Sagalowsky A, Czerniak B, Gazdar AF (2001) Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features. Cancer Res 61:8659–8663

    CAS  PubMed  Google Scholar 

  43. Fang F, Turcan S, Rimner A, Kaufman A, Giri D, Morris LG, Shen R, Seshan V, Mo Q, Heguy A, Baylin SB, Ahuja N, Viale A, Massague J, Norton L, Vahdat LT, Moynahan ME, Chan TA (2011) Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med 3:75ra25

    PubMed Central  PubMed  Google Scholar 

  44. Zhang QY, Yi DQ, Zhou L, Zhang DH, Zhou TM (2011) Status and significance of CpG island methylator phenotype in endometrial cancer. Gynecol Obstet Invest 72:183–191

    CAS  PubMed  Google Scholar 

  45. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Ogoshi K, Hashimoto S, Nakatani Y, Qu W, Oshima K, Tokunaga K, Sugano S, Hattori M, Morishita S, Matsushima K (2011) Genome-wide profiling of DNA methylation in human cancer cells. Genomics 98:280–287

    CAS  PubMed  Google Scholar 

  47. Koestler DC, Li J, Baron JA, Tsongalis GC, Butterly LF, Goodrich M, Lesseur C, Karagas MR, Marsit CJ, Moore JH, Andrew AS, Srivastava A (2014) Distinct patterns of DNA methylation in conventional adenomas involving the right and left colon. Mod Pathol 27:145–155

    CAS  PubMed  Google Scholar 

  48. Kim JW, Kim ST, Turner AR, Young T, Smith S, Liu W, Lindberg J, Egevad L, Gronberg H, Isaacs WB, Xu J (2012) Identification of new differentially methylated genes that have potential functional consequences in prostate cancer. PLoS One 7:e48455

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Feber A, Wilson GA, Zhang L, Presneau N, Idowu B, Down TA, Rakyan VK, Noon LA, Lloyd AC, Stupka E, Schiza V, Teschendorff AE, Schroth GP, Flanagan A, Beck S (2011) Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors. Genome Res 21:515–524

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Qu M, Jiao H, Zhao J, Ren ZP, Smits A, Kere J, Nister M (2010) Molecular genetic and epigenetic analysis of NCX2/SLC8A2 at 19q13.3 in human gliomas. Neuropathol Appl Neurobiol 36:198–210

    CAS  PubMed  Google Scholar 

  51. Rao X, Evans J, Chae H, Pilrose J, Kim S, Yan P, Huang RL, Lai HC, Lin H, Liu Y, Miller D, Rhee JK, Huang YW, Gu F, Gray JW, Huang TM, Nephew KP (2013) CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene 32:4519–4528

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Gaudet MM, Campan M, Figueroa JD, Yang XR, Lissowska J, Peplonska B, Brinton LA, Rimm DL, Laird PW, Garcia-Closas M, Sherman ME (2009) DNA hypermethylation of ESR1 and PGR in breast cancer: pathologic and epidemiologic associations. Cancer Epidemiol Biomarkers Prev 18:3036–3043

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Savio AJ, Lemire M, Mrkonjic M, Gallinger S, Zanke BW, Hudson TJ, Bapat B (2012) MLH1 region polymorphisms show a significant association with CpG island shore methylation in a large cohort of healthy individuals. PLoS One 7:e51531

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Raptis S, Mrkonjic M, Green RC, Pethe VV, Monga N, Chan YM, Daftary D, Dicks E, Younghusband BH, Parfrey PS, Gallinger SS, McLaughlin JR, Knight JA, Bapat B (2007) MLH1–93G>A promoter polymorphisms and the risk of microsatellite-unstable colorectal cancer. J Natl Cancer Inst 99:463–474

    CAS  PubMed  Google Scholar 

  55. Mrkonjic M, Roslin NM, Greenwood CM, Raptis S, Pollett A, Laird PW, Pethe VV, Chiang T, Daftary D, Dicks E, Thibodeau SN, Gallinger S, Parfrey PS, Younghusband HB, Potter JD, Hudson TJ, McLaughlin JR, Green RC, Zanke BW, Newcomb PA, Paterson AD, Bapat B (2010) Specific variants in the MLH1 gene region may drive DNA methylation, loss of protein expression, and MSI-H colorectal cancer. PLoS One 5:e13314

    PubMed Central  PubMed  Google Scholar 

  56. Perisic T, Holsboer F, Rein T, Zschocke J (2012) The CpG island shore of the GLT-1 gene acts as a methylation-sensitive enhancer. Glia 60:1345–1355

    PubMed  Google Scholar 

  57. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iver LM, Liu LM, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM, Zhang X, Cheng X (2012) Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 40:4841–4849

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286:35334–35338

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Jin SG, Wu X, Li AX, Pfeifer GP (2011) Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res 39:5015–5024

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29:68–72

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, Helin K (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473:343–348

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Szulwach KE, Li X, Li Y, Song CX, Han JW, Kim S, Namburi S, Hermetz K, Kim JJ, Rudd MK, Yoon YS, Ren B, He C, Jin P (2012) Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet 7:e1002154

    Google Scholar 

  66. Nestor CE, Ottaviano R, Reddington J, Sproul D, Reinhardt D, Dunican D, Katz E, Dixon JM, Harrison DJ, Meehan RR (2012) Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 22:467–477

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Globisch D, Munzel M, Muller M, Michalakis S, Wagner M, Koch S, Bruckl T, Biel M, Carell T (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5:e15367

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG, Toubaii A, Argani P, Iacobuzio-Donahue C, Nelson WG, Netto GJ, De Marzo AM, Yegnasubramanian S (2011) Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2:627–637

    PubMed Central  PubMed  Google Scholar 

  69. Kudo Y, Tateishi K, Yamamoto K, Yamamoto S, Asaoka Y, Ijichi H, Nagae G, Yoshida H, Aburatani H, Koike K (2012) Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation. Cancer Sci 103:670–676

    CAS  PubMed  Google Scholar 

  70. Ziller MJ, Muller F, Liao J, Zhang Y, Gu H, Bock C, Boyle P, Epstein CB, Bernstein BE, Lengauer T, Gnirke A, Meissner A (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 7:e1002389

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, Cross MK, Williams BA, Stamatoyannopoulos JA, Crawford GE, Absher DM, Wold BJ, Myers RM (2013) Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res 23:555–567

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Millar D, Ow KK, Paul CL, Russell PJ, Molloy PL, Clark SJ (1999) Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. Oncogene 18:1313–1324

    CAS  PubMed  Google Scholar 

  73. Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A, Jenuwein T, Xu G, Leonhardt H, Wolf V, Walter J (2012) In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet 8:e1002750

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Shirane K, Toh H, Kobayashi H, Miura F, Chiba H, Ito T, Kono T, Sasaki H (2013) Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet 9:e1003439

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Pulverer W, Wielscher M, Panzer-Grumayer R, Plessl T, Kriegner A, Vierlinger K, Weinhausel A (2012) The stem cell signature of CHH/CHG methylation is not present in 271 cancer associated 5′UTR gene regions. Biochimie 94:2345–2352

    CAS  PubMed  Google Scholar 

  76. Shen H, Laird PW (2013) Interplay between the cancer genome and epigenome. Cell 153:38–55

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231–1245

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294

    CAS  PubMed  Google Scholar 

  79. Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272

    CAS  PubMed  Google Scholar 

  80. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Mendenhall EM, Koche RP, Truong T, Zhou VW, Issac B, Chi AS, Ku M, Bernstein BE (2010) GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet 6:e1001244

    PubMed Central  PubMed  Google Scholar 

  82. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    CAS  PubMed  Google Scholar 

  83. Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280:13341–13348

    CAS  PubMed  Google Scholar 

  84. Kareta MS, Botello ZM, Ennis JJ, Chou C, Chedin F (2006) Reconstitution and mechanism of the stimulation of de novo methylation by human DNMT3L. J Biol Chem 281:25893–25902

    CAS  PubMed  Google Scholar 

  85. Lienert F, Wirbelauer C, Som I, Dean A, Mohn F, Schubeler D (2011) Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet 43:1091–1097

    CAS  PubMed  Google Scholar 

  86. Schlesinger Y, Straussman R, Keshet L, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236

    CAS  PubMed  Google Scholar 

  87. Tatematsu KI, Yamazaki T, Ishikawa F (2000) MBD2-MBD3 complex binds to hemi-methylated DNA and forms a complex containing DNMT1 at the replication foci in late S phase. Genes Cells 5:677–688

    CAS  PubMed  Google Scholar 

  88. Kanai Y, Ushijima S, Nakanishi Y, Sakamoto M, Hirohashi S (2003) Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett 192:75–82

    CAS  PubMed  Google Scholar 

  89. Kim MS, Kim YR, Yoo NJ, Lee SH (2013) Mutational analysis of DNMT3A gene in acute leukemias and common solid cancers. APMIS 121:85–94

    CAS  PubMed  Google Scholar 

  90. Linhart HG, Lin H, Yamada Y, Moran E, Steine EJ, Gokhale S, Lo G, Cantu E, Ehrich M, He T, Meissner A, Jaenisch R (2007) Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev 21:3110–3122

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Morita R, Hirohashi Y, Suzuki H, Takahashi A, Tamura Y, Kanaseki T, Asanuma H, Inoda S, Kondo T, Hashino S, Hasegawa T, Tokino T, Toyota M, Asaka M, Torigoe T, Sato N (2013) DNA methyltransferase 1 is essential for initiation of the colon cancers. Exp Mol Pathol 94:322–329

    CAS  PubMed  Google Scholar 

  92. Fijii S, Katake Y, Tanaka H (2010) Increased expression of DNA methyltransferase-1 in non-neoplastic epithelium helps predict colorectal neoplasia risk in ulcerative colitis. Digestion 82:179–186

    Google Scholar 

  93. Gravina GL, Ranieri G, Muzi P, Marampon F, Mancini A, Di Pasquale B, Di Clemente L, Dolo V, D’Alessandro AM, Festuccia C (2013) Increased levels of DNA methyltransferases are associated with the tumorigenic capacity of prostate cancer cells. Oncol Rep 29:1189–1195

    CAS  PubMed  Google Scholar 

  94. Fuks F, Hurd PJ, Deplus R, Kouzarides T (2003) The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31:2305–2312

    CAS  PubMed Central  PubMed  Google Scholar 

  95. McGarvey KM, Van Neste L, Cope L, Ohm JE, Herman JG, Van Criekinge W, Schuebel KE, Baylin SB (2008) Defining a chromatin pattern that characterizes DNA-hypermethylated genes in colon cancer cells. Cancer Res 68:5753–5759

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Kron K, Trudel D, Pethe V, Briollais L, Fleshner N, van der Kwast T, Bapat B (2013) Altered DNA methylation landscapes of polycomb-repressed loci are associated with prostate cancer progression and ERG oncogene expression in prostate cancer. Clin Cancer Res 19:3450–3461

    CAS  PubMed  Google Scholar 

  97. Gal-Yam EN, Egger G, Iniquez L, Holster H, Einarsson S, Zhang X, Lin JC, Liang G, Jones PA, Tanay A (2008) Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci U S A 105:12979–12984

    PubMed Central  PubMed  Google Scholar 

  98. Brinkman AB, Gu H, Bartels SJ, Zhang Y, Matarese F, Simmer F, Marks H, Bock C, Gnirke A, Meissner A, Stunnenberg HG (2012) Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res 22:1128–1138

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Fraga MF, Ballestar E, Villar-Garea A, Boix Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Perez-Rosado A, Calvo LJA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation of Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    CAS  PubMed  Google Scholar 

  100. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    CAS  PubMed  Google Scholar 

  101. Huffman DM, Grizzle WE, Bamman MM, Kim JS, Eltoum IA, Elgavish A, Nagy TR (2007) SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67:6612–6618

    CAS  PubMed  Google Scholar 

  102. Stunkel W, Peh BK, Tan YC, Nayagam VM, Wang X, Salto-Tellez M, Ni B, Entzeroth M, Wood J (2007) Function of the SIRT1 protein deacetylase in cancer. Biotechnol J 2:1360–1368

    CAS  PubMed  Google Scholar 

  103. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Leszinski G, Gezer U, Siegele B, Stoetzer O, Holdenrieder S (2012) Relevance of histone marks H3K9me3 and H4K20me3 in cancer. Anticancer Res 32:2199–2205

    CAS  PubMed  Google Scholar 

  105. Gezer U, Ustek D, Yoruker EE, Cakiris A, Abaci N, Leszinski G, Dalay N, Holdenrieder S (2013) Characterization of H3K9me3- and H4K20me3-associated circulating nucleosomal DNA by high-throughput sequencing in colorectal cancer. Tumour Biol 34:329–336

    CAS  PubMed  Google Scholar 

  106. Behbahani TE, Kahl P, von der Gathen J, Heukamp LC, Baumann C, Gutgemann I, Walter B, Hofstadter F, Bastian PJ, von Ruecker A, Muller SC, Rogenhofer S, Ellinger J (2012) Alterations of global histone H4K20 methylation during prostate carcinogenesis. BMC Urol 12:5

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    CAS  PubMed  Google Scholar 

  108. Yu J, Yu J, Rhodes DR, Tomlins SA, Cao X, Chen G, Mehra R, Wang X, Ghosh D, Shah RB, Varambally S, Pienta KJ, Chinnaiyan AM (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67:10657–10663

    CAS  PubMed  Google Scholar 

  109. Xiang Y, Zhu Z, Han G, Lin H, Xu L, Chen CD (2007) JMJD3 is a histone H3K27 demethylase. Cell Res 17:850–857

    CAS  PubMed  Google Scholar 

  110. Lin TY, Cheng YC, Yang HC, Lin WC, Wang CC, Lai PL, Shieh SY (2012) Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK-JMJD3-p16(INK4a) signaling axis. Oncogene 31:3287–3297

    CAS  PubMed  Google Scholar 

  111. Lin YW, Ren LL, Xiong H, Du W, Yu YN, Sun TT, Weng YR, Wang ZH, Wang JL, Wang YC, Cui Y, Sun DF, Han ZG, Shen N, Zou W, Xu J, Chen HY, Cao W, Hong J, Fang JY (2013) Role of STAT3 and vitamin D receptor in EZH2-mediated invasion of human colorectal cancer. J Pathol 230:277–290

    CAS  PubMed  Google Scholar 

  112. Fussbroich B, Wagener N, Macher-Goeppinger S, Benner A, Falth M, Sultmann H, Holzer A, Hoppe-Seyler K, Hoppe-Seyler F (2011) EZH2 depletion blocks the proliferation of colon cancer cells. PLoS One 6:e21651

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Benoit YD, Laursen KB, Witherspoon MS, Lipkin SM, Gudas LJ (2013) Inhibition of PRC2 histone methyltransferase activity increases TRAIL-mediated apoptosis sensitivity in human colon cancer cells. J Cell Physiol 228:764–772

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Crea F, Hurt EM, Mathews LA, Carbarcas SM, Sun L, Marquez VE, Danesi R, Farrar WL (2011) Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol Cancer 10:40

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Li Q, Chen H (2012) Silencing of Wnt5a during colon cancer metastasis involves histone modifications. Epigenetics 7:551–558

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Derks S, Bosch LJ, Niessen HE, Moerkerk PT, van den Bosch SM, Carvalho B, Mongera S, Voncken JW, Meijer GA, de Bruine AP, Herman JG, van Engeland M (2009) Promoter CpG island hypermethylation- and H3K9me3 and H3K27me3-mediated epigenetic silencing targets the deleted in colon cancer (DCC) gene in colorectal carcinogenesis without affecting neighboring genes on chromosomal region 18q21. Carcinogenesis 30:1041–1048

    CAS  PubMed  Google Scholar 

  117. Rawson JB, Mrkonjic M, Daftary D, Dicks E, Buchanan DD, Younghusband HB, Parfrey PS, Young JP, Pollett A, Green RC, Gallinger S, McLaughlin JR, Knight JA, Bapat B (2011) Promoter methylation of Wnt5a is associated with microsatellite instability and BRAF v600E mutation in two large populations of colorectal cancer patients. Br J Cancer 104:1906–1912

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Shinojima T, Yu Q, Huang SK, Li M, Mizuno R, Liu ET, Hoon DS, Lessard L (2012) Heterogeneous epigenetic regulation of TIMP3 in prostate cancer. Epigenetics 7:1279–1289

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Seligson DB, Horvath S, McBrian MA, Mah V, Yu H, Tze S, Wang Q, Chia D, Goodglick L, Kurdistani SK (2009) Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 174:1619–1628

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Ellinger J, Kahl P, von der Gathen J, Rogenhofer S, Heukamp LC, Gutgemann I, Walter B, Hofstadter F, Buttner R, Muller SC, Bastian PJ, von Ruecker A (2010) Global levels of histone modifications predict prostate cancer recurrence. Prostate 70:61–69

    CAS  PubMed  Google Scholar 

  121. Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6:731–740

    CAS  PubMed  Google Scholar 

  122. Hayami S, Kelly JD, Cho HS, Yoshimatsu M, Unoki M, Tsunoda T, Field HI, Neal DE, Yamaue H, Ponder BA, Nakamura Y, Hamamoto R (2011) Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int J Cancer 128:574–586

    CAS  PubMed  Google Scholar 

  123. Jin L, Hanigan CL, Wu Y, Wang W, Park BH, Woster PM, Casero RA (2013) Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human colon cancer cells in a p53- and DNMT1(DNA methyltransferase 1)-independent manner. Biochem J 449:459–468

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Kalh P, Gullotti L, Heukamp LC, Wolf S, Friedrichs N, Vorreuter R, Solleder G, Bastian PJ, Ellinger J, Metger E, Schule R, Buettner R (2006) Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 66:11341–11347

    Google Scholar 

  125. Willmann D, Lim S, Wetzel S, Metzger E, Jandausch A, Wilk W, Jung M, Forne I, Imhof A, Janzer A, Kirfel J, Waldmann H, Schule R, Buettner R (2012) Impairment of prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitor. Int J Cancer 131:2704–2709

    CAS  PubMed  Google Scholar 

  126. Kang MY, Lee BB, Kim YH, Chang DK, Kyu Park S, Chun HK, Song SY, Park J, Kim DH (2007) Association of the SUV39H1 histone methyltransferase with the DNA methyltransferase 1 at mRNA expression level in primary colorectal cancer. Int J Cancer 121:2192–2197

    CAS  PubMed  Google Scholar 

  127. Kondo Y, Shen L, Ahmed S, Boumber Y, Sekido Y, Haddad BR, Issa JP (2008) Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS One 3:e2037

    PubMed Central  PubMed  Google Scholar 

  128. Mohamed MA, Greif PA, Diamond J, Sharaf O, Maxwell P, Montironi R, Young RA, Hamilton PW (2007) Epigenetic events, remodelling enzymes and their relationship to chromatin organization in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. BJU Int 99:908–915

    CAS  PubMed  Google Scholar 

  129. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266

    CAS  PubMed  Google Scholar 

  130. Ashktorab H, Belgrave K, Hosseinkhah F, Brim H, Nouraie M, Takkikto M, Hewitt S, Lee EL, Dashwood RH, Smoot D (2009) Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig Dis Sci 54:2109–2117

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Hahn MA, Wu X, Li AX, Hahn T, Pfeifer GP (2011) Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks. PLoS One 6:e18844

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Li F, Mao G, Tong D, Huang J, Gu L, Yang W, Li GM (2013) The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 153:590–600

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Bharati Bapat is funded by Ontario Institute for Cancer Research (#10NOV-412), Prostate Cancer Canada (#2011-700), The Bill and Kathleen Troost Innovation Grant for Canadian Cancer Society (grant #701456), and the Ontario Research Fund Global Leadership Round in Genomics and Life Sciences (GL2, ORF-RE File# GL2-01-043), and Prostate Cancer Canada and the Movember Foundation (Grant#TAG2014-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharati Bapat Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Savio, A.J., Bapat, B. (2015). Beyond the Island: Epigenetic Biomarkers of Colorectal and Prostate Cancer. In: Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 1238. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1804-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1804-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1803-4

  • Online ISBN: 978-1-4939-1804-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics