Skip to main content

Vaginal and Rectal HIV Transmission in Humanized Mice

  • Chapter
  • First Online:
Humanized Mice for HIV Research

Abstract

Mucosal HIV exposures account for the vast majority of the 2.5 million new HIV transmissions that occur annually worldwide. The ability to accurately model mucosal HIV transmission in vivo using animal models such as humanized mice is important for understanding this process. Humanized mice have shown to be susceptible to HIV infection after either vaginal or rectal exposure and have been utilized for a number of mucosal transmission studies with primary HIV isolates, laboratory HIV isolates and, more recently, transmitted founder HIV isolates. Many studies of mucosal HIV transmission in humanized mice have focused on testing prevention, interventions, as well as the transmission of antiviral drug-resistant strains. The breadth of the studies reviewed here emphasizes the versatility of these models for future research evaluating mucosal HIV transmission and its prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO-UNAIDS. UNAIDS Report on the global AIDS epidemic. Geneva, Switzerland. 2012. http://www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2012/gr2012/20121120_UNAIDS_Global_Report_2012_with_annexes_en.pdf2012.

  2. Hatziioannou T, Ambrose Z, Chung NP, Piatak M Jr., Yuan F, Trubey CM, et al. A macaque model of HIV-1 infection. Proc Natl Acad Sci U S A. 2009;106(11):4425–9.

    Article  Google Scholar 

  3. Mariani R, Rutter G, Harris ME, Hope TJ, Krausslich H-G, Landau NR. A block to human immunodeficiency virus type 1 assembly in murine cells. J Virol. 2000;74(8):3859–70.

    Article  Google Scholar 

  4. Bieniasz PD, Cullen BR. Multiple blocks to human immunodeficiency virus type 1 replication in rodent cells. J Virol. 2000;74(21):9868–77.

    Article  Google Scholar 

  5. Denton PW, Garcia JV. Novel humanized murine models for HIV research. Curr HIV/AIDS Rep. 2009;6(1):13–9.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Denton PW, Garcia JV. Humanized mouse models of HIV infection. AIDS Rev. 2011;13(3):135–48.

    Google Scholar 

  7. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98.

    Article  Google Scholar 

  8. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–30.

    Article  Google Scholar 

  9. Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology. 2013;435(1):14–28.

    Article  Google Scholar 

  10. Berges BK, Rowan MR. The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment. Retrovirology. 2011;8:65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Su L. Studying human immunology and immunopathology in humanized mice transplanted with human lymphoid tissues and immune cells. Cell Mol Immunol. 2012;9(3):191–2.

    Article  Google Scholar 

  12. Nischang M, Gers-Huber G, Audiga A, Akkina R, Speck R. Modeling HIV infection and therapies in humanized mice. Swiss Med Wkly. 2012;142:w13618.

    PubMed  Google Scholar 

  13. Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol. 2012;9(3):208–14.

    Article  Google Scholar 

  14. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304(5667):104–7.

    Article  Google Scholar 

  15. Akkina R, Berges BK, Palmer BE, Remling L, Neff CP, Kuruvilla J, et al. Humanized Rag1-/- gammac-/- mice support multilineage hematopoiesis and are susceptible to HIV-1 infection via systemic and vaginal routes. PLoS ONE. 2011;6(6):e20169. doi:10.1371/journal.pone.0020169.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108(2):487–92.

    Article  Google Scholar 

  17. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12(11):1316–22.

    Article  Google Scholar 

  18. Greiner DL, Shultz LD, Yates J, Appel MC, Perdrizet G, Hesselton RM, et al. Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice. Am J Pathol. 1995;146(4):888–902.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Ueda T, Yoshino H, Kobayashi K, Kawahata M, Ebihara Y, Ito M, et al. Hematopoietic repopulating ability of cord blood CD34(+) cells in NOD/Shi-scid mice. Stem Cells. 2000;18(3):204–13.

    Article  Google Scholar 

  20. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89.

    Article  Google Scholar 

  21. Haase AT. Targeting early infection to prevent HIV-1 mucosal transmission. Nature. 2010;464(7286):217–23.

    Article  Google Scholar 

  22. Stoddart CA, Maidji E, Galkina SA, Kosikova G, Rivera JM, Moreno ME, et al. Superior human leukocyte reconstitution and susceptibility to vaginal HIV transmission in humanized NOD-scid IL-2Rgamma(-/-) (NSG) BLT mice. Virology. 2011;417(1):154–60.

    Article  Google Scholar 

  23. Denton PW, Garcia JV. Mucosal HIV-1 transmission and prevention strategies in BLT humanized mice. Trends Microbiol. 2012;20(6):268–74.

    Article  Google Scholar 

  24. Denton PW, Estes JD, Sun Z, Othieno FA, Wei BL, Wege AK, et al. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med. 2008;5(1):e16.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Denton PW, Othieno F, Martinez-Torres F, Zou W, Krisko JF, Fleming E, et al. One percent tenofovir applied topically to humanized BLT mice and used according to the CAPRISA 004 experimental design demonstrates partial protection from vaginal HIV infection, validating the BLT model for evaluation of new microbicide candidates. J Virol. 2011;85(15):7582–93.

    Article  Google Scholar 

  26. Denton PW, Nochi T, Lim A, Krisko JF, Martinez-Torres F, Choudhary SK, et al. IL-2 receptor gamma-chain molecule is critical for intestinal T-cell reconstitution in humanized mice. Mucosal Immunol. 2012;5(5):555–66.

    Google Scholar 

  27. Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, Wege AK, et al. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med. 2007;204(4):705–14.

    Article  Google Scholar 

  28. Olesen R, Wahl A, Denton PW, Victor Garcia J. Immune reconstitution of the female reproductive tract of humanized BLT mice and their susceptibility to human immunodeficiency virus infection. J Reprod Immunol. 2011;88(2):195–203.

    Article  Google Scholar 

  29. Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK, et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol. 2009;83(14):7305–21.

    Article  Google Scholar 

  30. Berges BK, Akkina SR, Folkvord JM, Connick E, Akkina R. Mucosal transmission of R5 and X4 tropic HIV-1 via vaginal and rectal routes in humanized Rag2-/- gammac -/- (RAG-hu) mice. Virology. 2008;373(2):342–51.

    Article  Google Scholar 

  31. Neff CP, Ndolo T, Tandon A, Habu Y, Akkina R. Oral pre-exposure prophylaxis by anti-retrovirals raltegravir and maraviroc protects against HIV-1 vaginal transmission in a humanized mouse model. PLoS ONE. 2010;5(12):e15257 doi:10.1371/journal.pone.0015257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Neff CP, Kurisu T, Ndolo T, Fox K, Akkina R. A topical microbicide gel formulation of CCR5 antagonist maraviroc prevents HIV-1 vaginal transmission in humanized RAG-hu mice. PLoS ONE. 2011;6(6):e20209. doi:10.1371/journal.pone.0020209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Wheeler LA, Trifonova R, Vrbanac V, Basar E, McKernan S, Xu Z, et al. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J Clin Invest. 2011;121(6):2401–12.

    Article  Google Scholar 

  34. Hur EM, Patel SN, Shimizu S, Rao DS, Gnanapragasam PN, An DS, et al. Inhibitory effect of HIV-specific neutralizing IgA on mucosal transmission of HIV in humanized mice. Blood. 2012;120(23):4571–82.

    Article  Google Scholar 

  35. Veselinovic M, Neff CP, Mulder LR, Akkina R. Topical gel formulation of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 confers protection against HIV-1 vaginal challenge in a humanized mouse model. Virology. 2012;432(2):505–10.

    Article  Google Scholar 

  36. Chateau M, Swanson MD, Garcia JV. Inefficient vaginal transmission of tenofovir resistant HIV-1. J Virol. 2013;87(2):1274–7.

    Article  Google Scholar 

  37. Hofer U, Baenziger S, Heikenwalder M, Schlaepfer E, Gehre N, Regenass S, et al. RAG2-/- gamma(c)-/- mice transplanted with CD34+ cells from human cord blood show low levels of intestinal engraftment and are resistant to rectal transmission of human immunodeficiency virus. J Virol. 2008;82(24):12145–53.

    Article  Google Scholar 

  38. Chateau ML, Denton PW, Swanson MD, McGowan I, Garcia JV. Rectal transmission of transmitted/founder HIV-1 is efficiently prevented by topical 1 % tenofovir in BLT humanized mice. PLoS ONE. 2013;8(3):e60024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Denton PW, Krisko JF, Powell DA, Mathias M, Kwak YT, Martinez-Torres F, et al. Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice. PLoS ONE. 2010;5(1):e8829.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Metzner KJ, Bonhoeffer S, Fischer M, Karanicolas R, Allers K, Joos B, et al. Emergence of minor populations of human immunodeficiency virus type 1 carrying the M184V and L90M mutations in subjects undergoing structured treatment interruptions. J Infect Dis. 2003;188(10):1433–43.

    Article  Google Scholar 

  41. Brenner BG, Roger M, Moisi DD, Oliveira M, Hardy I, Turgel R, et al. Transmission networks of drug resistance acquired in primary/early stage HIV infection. AIDS. 2008;22(18):2509–15.

    Article  Google Scholar 

  42. Wainberg MA, Moisi D, Oliveira M, Toni TD, Brenner BG. Transmission dynamics of the M184V drug resistance mutation in primary HIV infection. J Antimicrob Chemother. 2011;66(10):2346–9.

    Article  Google Scholar 

  43. Hightow-Weidman LB, Hurt CB, Phillips G 2., Jones K, Magnus M, Giordano TP, et al. Transmitted HIV-1 drug resistance among young men of color who have sex with men: a multicenter cohort analysis. J Adolesc Health. 2011;48(1):94–9.

    Article  Google Scholar 

  44. Li JF, Lipscomb JT, Wei X, Martinson NA, Morris L, Heneine W, et al. Detection of low-level K65R variants in nucleoside reverse transcriptase inhibitor-naive chronic and acute HIV-1 subtype C infections. J Infect Dis. 2011;203(6):798–802.

    Article  Google Scholar 

  45. Little SJ, Holte S, Routy JP, Daar ES, Markowitz M, Collier AC, et al. Antiretroviral-drug resistance among patients recently infected with HIV. N Engl J Med. 2002;347(6):385–94.

    Article  Google Scholar 

  46. Borroto-Esoda K, Waters JM, Bae AS, Harris JL, Hinkle JE, Quinn JB, et al. Baseline genotype as a predictor of virological failure to emtricitabine or stavudine in combination with didanosine and efavirenz. AIDS Res Hum Retroviruses. 2007;23(8):988–95.

    Article  Google Scholar 

  47. Frentz D, Boucher CA, van de Vijver DA. Temporal changes in the epidemiology of transmission of drug-resistant HIV-1 across the world. AIDS Rev. 2012 ;14(1):17–27.

    Google Scholar 

  48. Huang HY, Daar ES, Sax PE, Young B, Cook P, Benson P, et al. The prevalence of transmitted antiretroviral drug resistance in treatment-naive patients and factors influencing first-line treatment regimen selection. HIV Med. 2008;9(5):285–93.

    Article  Google Scholar 

  49. Kuritzkes DR, Lalama CM, Ribaudo HJ, Marcial M, Meyer WA 3., Shikuma C, et al. Preexisting resistance to nonnucleoside reverse-transcriptase inhibitors predicts virologic failure of an efavirenz-based regimen in treatment-naive HIV-1-infected subjects. J Infect Dis. 2008;197(6):867–70.

    Article  Google Scholar 

  50. Bansal V, Metzner KJ, Niederost B, Leemann C, Boni J, Gunthard HF, et al. Minority K65R variants and early failure of antiretroviral therapy in HIV-1-infected Eritrean immigrant. Emerg Infect Dis. 2011;17(10):1966–8.

    Article  Google Scholar 

  51. Bennett DE, Camacho RJ, Otelea D, Kuritzkes DR, Fleury H, Kiuchi M, et al. Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. PLoS ONE. 2009;4(3):e4724.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Dumond JB, Yeh RF, Patterson KB, Corbett AH, Jung BH, Rezk NL, et al. Antiretroviral drug exposure in the female genital tract: implications for oral pre- and post-exposure prophylaxis. AIDS. 2007;21(14):1899–907.

    Article  Google Scholar 

  53. Kashuba AD, Patterson KB, Dumond JB, Cohen MS. Pre-exposure prophylaxis for HIV prevention: how to predict success. Lancet. 2011. doi:10.1016/S0140-6736(11)61852-7.

    Google Scholar 

  54. Patterson KB, Prince HA, Kraft E, Jenkins AJ, Shaheen NJ, Rooney JF, et al. Penetration of tenofovir and emtricitabine in mucosal tissues: implications for prevention of HIV-1 transmission. Sci Transl Med. 2011;3(112):112re4.

    Article  Google Scholar 

  55. Johnson VA, Calvez V, Gunthard HF, Paredes R, Pillay D, Shafer R, et al. Update of the drug resistance mutations in HIV-1. Top Antivir Med. 2011;19(4):156–64.

    Google Scholar 

  56. Wainberg MA, Miller MD, Quan Y, Salomon H, Mulato AS, Lamy PD, et al. In vitro selection and characterization of HIV-1 with reduced susceptibility to PMPA. Antivir Ther. 1999;4(2):87–94.

    Google Scholar 

  57. Wagner BG, Garcia-Lerma JG, Blower S. Factors limiting the transmission of HIV mutations conferring drug resistance: fitness costs and genetic bottlenecks. Sci Rep. 2012;2:320.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Abuzakouk M, Carton J, Feighery C, O’Donoghue DP, Weir DG, O’Farrelly C. CD4+ CD8+ and CD8alpha+ beta- T lymphocytes in human small intestinal lamina propria. Eur J Gastroenterol Hepatol. 1998;10(4):325–9.

    Article  Google Scholar 

  59. Carton J, Byrne B, Madrigal-Estebas L, O’Donoghue DP, O’Farrelly C. CD4+CD8+ human small intestinal T cells are decreased in coeliac patients, with CD8 expression downregulated on intra-epithelial T cells in the active disease. Eur J Gastroenterol Hepatol. 2004;16(10):961–8.

    Article  Google Scholar 

  60. Koyanagi Y, Miles S, Mitsuyasu RT, Merrill JE, Vinters HV, Chen IS. Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science. 1987;236(4803):819–22.

    Article  Google Scholar 

  61. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A. 2008;105(21):7552–7.

    Article  Google Scholar 

  62. Ochsenbauer C, Edmonds TG, Ding H, Keele BF, Decker J, Salazar MG, et al. Generation of transmitted/founder HIV-1 infectious molecular clones and characterization of their replication capacity in CD4 T lymphocytes and monocyte-derived macrophages. J Virol. 2012;86(5):2715–28.

    Article  Google Scholar 

  63. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, et al. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med. 2009;206(6):1273–89.

    Article  Google Scholar 

  64. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010;329(5996):1168–74.

    Article  Google Scholar 

  65. Microbicide Trials Network. MTN statement on decision to discontinue use of Tenofovir gel in VOICE, a major HIV prevention study in women. 2011. http://www.mtnstopshiv.org/node/3909. Accessed: 29 Nov 2011.

  66. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med. 2010;363(27):2587–99.

    Article  Google Scholar 

  67. Hurt CB, Eron JJ, Jr., Cohen MS. Pre-exposure prophylaxis and antiretroviral resistance: HIV prevention at a cost? Clin Infect Dis. 2011;53(12):1265–70.

    Article  Google Scholar 

  68. US-FDA. Truvada for PrEP fact sheet: ensuring safe and proper use. 2012. http://www.fda.gov/downloads/NewsEvents/Newsroom/FactSheets/UCM312279.pdf2012.

  69. Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, et al. HIV-infected T cells are migratory vehicles for viral dissemination. Nature. 2012;490(7419):283–7.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by National Institutes of Health grants AI73146 and AI96138 (JVG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Denton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Denton, P., Chateau, M., Garcia, J. (2014). Vaginal and Rectal HIV Transmission in Humanized Mice. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_19

Download citation

Publish with us

Policies and ethics