Skip to main content

Modulating the Tumor Microenvironment with RNA Interference as a Cancer Treatment Strategy

  • Protocol
  • First Online:
Book cover RNA Interference

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1218))

Abstract

The tumor microenvironment is composed of accessory cells and immune cells in addition to extracellular matrix (ECM) components. The stromal compartment interacts with cancer cells in a complex crosstalk to support tumor development. Growth factors and cytokines produced by stromal cells support the growth of tumor cells and promote interaction with the vasculature to enhance tumor progression and invasion. The activation of autocrine and paracrine oncogenic signaling pathways by growth factors, cytokines, and proteases derived from both tumor cells and the stromal compartment is thought to play a major role in assisting tumor cells during metastasis. Consequently, targeting tumor–stroma interactions by RNA interference (RNAi)-based approaches is a promising strategy in the search for novel treatment modalities in human cancer. Recent advances in packaging technology including the use of polymers, peptides, liposomes, and nanoparticles to deliver small interfering RNAs (siRNAs) into target cells may overcome limitations associated with potential RNAi-based therapeutics. Newly developed nonviral gene delivery approaches have shown improved anticancer efficacy suggesting that RNAi-based therapeutics provide novel opportunities to elicit significant gene silencing and induce regression of tumor growth. This chapter summarizes our current understanding of the tumor microenvironment and highlights some potential targets for therapeutic intervention with RNAi-based cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farber E (1984) The multistep nature of cancer development. Cancer Res 44:4217–4223

    PubMed  CAS  Google Scholar 

  2. Weinberg RA (1989) Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res 49:3713–3721

    PubMed  CAS  Google Scholar 

  3. Stetler-Stevenson WG, Yu AE (2001) Proteases in invasion: matrix metalloproteinases. Semin Cancer Biol 11:143–152

    Article  PubMed  CAS  Google Scholar 

  4. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  5. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  PubMed  CAS  Google Scholar 

  6. Folkman J (1995) Angiogenesis inhibitors generated by tumors. Mol Med 1:120–122

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379

    Article  PubMed  CAS  Google Scholar 

  8. Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61

    Article  PubMed  CAS  Google Scholar 

  9. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-associated macrophages. Immunol Today 13:265–270

    Article  PubMed  CAS  Google Scholar 

  10. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  PubMed  CAS  Google Scholar 

  11. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143:401–409

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Polverini PJ, Cotran PS, Gimbrone MA Jr, Unanue ER (1977) Activated macrophages induce vascular proliferation. Nature 269:804–806

    Article  PubMed  CAS  Google Scholar 

  13. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C (1994) Macrophages and angiogenesis. J Leukoc Biol 55:410–422

    PubMed  CAS  Google Scholar 

  14. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Coussens LM, Werb Z (1996) Matrix metalloproteinases and the development of cancer. Chem Biol 3:895–904

    Article  PubMed  CAS  Google Scholar 

  16. Baglole CJ, Ray DM, Bernstein SH, Feldon SE, Smith TJ, Sime PJ, Phipps RP (2006) More than structural cells, fibroblasts create and orchestrate the tumor microenvironment. Immunol Invest 35:297–325

    Article  PubMed  CAS  Google Scholar 

  17. Mueller MM, Fusenig NE (2004) Friends or foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  PubMed  CAS  Google Scholar 

  18. Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–503

    Article  PubMed  CAS  Google Scholar 

  19. Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A 99:12877–12882

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  21. Dimanche-Boitrel MT, Vakaet L Jr, Pujuguet P, Chauffert B, Martin MS, Hammann A, Van Roy F, Mareel M, Martin F (1994) In vivo and in vitro invasiveness of a rat colon-cancer cell line maintaining E-cadherin expression: an enhancing role of tumor-associated myofibroblasts. Int J Cancer 56:512–521

    Article  PubMed  CAS  Google Scholar 

  22. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851

    Article  PubMed  CAS  Google Scholar 

  23. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  PubMed  CAS  Google Scholar 

  24. Scott AM, Wiseman G, Welt S, Adjei A, Lee FT, Hopkins W, Divgi CR, Hanson LH, Mitchell P, Gansen DN, Larson SM, Ingle JN, Hoffman EW, Tanswell P, Ritter G, Cohen LS, Bette P, Arvay L, Amelsberg A, Vlock D, Rettig WJ, Old LJ (2003) A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res 9:1639–1647

    PubMed  CAS  Google Scholar 

  25. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, Seed B (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725

    Article  PubMed  CAS  Google Scholar 

  27. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  PubMed  CAS  Google Scholar 

  28. Goon PK, Lip GY, Boos CJ, Stonelake PS, Blann AD (2006) Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 8:79–88

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201

    Article  PubMed  CAS  Google Scholar 

  30. Rafii S, Meeus S, Dias S, Hattori K, Heissig B, Shmelkov S, Rafii D, Lyden D (2002) Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Semin Cell Dev Biol 13:61–67

    Article  PubMed  CAS  Google Scholar 

  31. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107:1322–1328

    Article  PubMed  CAS  Google Scholar 

  32. Aghi M, Cohen KS, Klein RJ, Scadden DT, Chiocca EA (2006) Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res 66:9054–9064

    Article  PubMed  CAS  Google Scholar 

  33. Sherr CJ, Rettenmier CW, Sacca R, Roussel MF, Look AT, Stanley ER (1985) The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41:665–676

    Article  PubMed  CAS  Google Scholar 

  34. Lopez M, Martinache C, Canepa S, Chokri M, Scotto F, Bartholeyns J (1993) Autologous lymphocytes prevent the death of monocytes in culture and promote, as do GM-CSF, IL-3 and M-CSF, their differentiation into macrophages. J Immunol Methods 159:29–38

    Article  PubMed  CAS  Google Scholar 

  35. Stanley ER (2000) CSF-1. In: Oppenheim J, Feldmann M (eds) Cytokine reference: a compendium of cytokines and other mediators of host defence. Academic, London, pp 911–934

    Google Scholar 

  36. James SL, Cook KW, Lazdins JK (1990) Activation of human monocyte-derived macrophages to kill schistosomula of Schistosoma mansoni in vitro. J Immunol 145:2686–2690

    PubMed  CAS  Google Scholar 

  37. Eubank TD, Galloway M, Montague CM, Waldman WJ, Marsh CB (2003) M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J Immunol 171:2637–2643

    Article  PubMed  CAS  Google Scholar 

  38. Roth P, Stanley ER (1992) The biology of CSF-1 and its receptor. Curr Top Microbiol Immunol 181:141–167

    PubMed  CAS  Google Scholar 

  39. Yeung YG, Stanley ER (2003) Proteomic approaches to the analysis of early events in colony-stimulating factor-1 signal transduction. Mol Cell Proteomics 2:1143–1155

    Article  PubMed  CAS  Google Scholar 

  40. Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14:628–638

    Article  PubMed  CAS  Google Scholar 

  41. Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW (2002) The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia 7:147–162

    Article  PubMed  Google Scholar 

  42. Bast RC Jr, Boyer CM, Jacobs I, Xu FJ, Wu S, Wiener J, Kohler M, Berchuck A (1993) Cell growth regulation in epithelial ovarian cancer. Cancer 71:1597–1601

    Article  PubMed  Google Scholar 

  43. Baiocchi G, Kavanagh JJ, Talpaz M, Wharton JT, Gutterman JU, Kurzrock R (1991) Expression of the macrophage colony-stimulating factor and its receptor in gynecologic malignancies. Cancer 67:990–996

    Article  PubMed  CAS  Google Scholar 

  44. Lidor YJ, Xu FJ, Martinez-Maza O, Olt GJ, Marks JR, Berchuck A, Ramakrishnan S, Berek JS, Bast RC Jr (1993) Constitutive production of macrophage colony-stimulating factor and interleukin-6 by human ovarian surface epithelial cells. Exp Cell Res 207:332–339

    Article  PubMed  CAS  Google Scholar 

  45. Kacinski BM, Chambers SK, Stanley ER, Carter D, Tseng P, Scata KA, Chang DH, Pirro MH, Nguyen JT, Ariza A et al (1990) The cytokine CSF-1 (M-CSF) expressed by endometrial carcinomas in vivo and in vitro, may also be a circulating tumor marker of neoplastic disease activity in endometrial carcinoma patients. Int J Radiat Oncol Biol Phys 19:619–626

    Article  PubMed  CAS  Google Scholar 

  46. Suzuki M, Ohwada M, Aida I, Tamada T, Hanamura T, Nagatomo M (1993) Macrophage colony-stimulating factor as a tumor marker for epithelial ovarian cancer. Obstet Gynecol 82:946–950

    PubMed  CAS  Google Scholar 

  47. Suzuki M, Kobayashi H, Ohwada M, Terao T, Sato I (1998) Macrophage colony-stimulating factor as a marker for malignant germ cell tumors of the ovary. Gynecol Oncol 68:35–37

    Article  PubMed  CAS  Google Scholar 

  48. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444

    Article  PubMed  CAS  Google Scholar 

  49. Nowicki A, Szenajch J, Ostrowska G, Wojtowicz A, Wojtowicz K, Kruszewski AA, Maruszynski M, Aukerman SL, Wiktor-Jedrzejczak W (1996) Impaired tumor growth in colony-stimulating factor 1 (CSF-1)-deficient, macrophage-deficient op/op mouse: evidence for a role of CSF-1-dependent macrophages in formation of tumor stroma. Int J Cancer 65:112–119

    Article  PubMed  CAS  Google Scholar 

  50. Pei XH, Nakanishi Y, Takayama K, Bai F, Hara N (1999) Granulocyte, granulocyte-macrophage, and macrophage colony-stimulating factors can stimulate the invasive capacity of human lung cancer cells. Br J Cancer 79:40–46

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Stanley E (1992) Colony-Stimulating Factor-1. In: Gutterman J, Aggarwal B (eds) Human cytokines. Blackwell, Boston, MA, pp 196–220

    Google Scholar 

  52. Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R, Stanley ER, Abraham D (2004) Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res 64:5378–5384

    Article  PubMed  CAS  Google Scholar 

  53. Russo J, Russo IH (2001) The pathway of neoplastic transformation of human breast epithelial cells. Radiat Res 155:151–154

    Article  PubMed  CAS  Google Scholar 

  54. Aharinejad S, Abraham D, Paulus P, Abri H, Hofmann M, Grossschmidt K, Schafer R, Stanley ER, Hofbauer R (2002) Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Cancer Res 62:5317–5324

    PubMed  CAS  Google Scholar 

  55. Cox GW, Melillo G, Chattopadhyay U, Mullet D, Fertel RH, Varesio L (1992) Tumor necrosis factor-alpha-dependent production of reactive nitrogen intermediates mediates IFN-gamma plus IL-2-induced murine macrophage tumoricidal activity. J Immunol 149:3290–3296

    PubMed  CAS  Google Scholar 

  56. Lejeune FJ, Ruegg C, Lienard D (1998) Clinical applications of TNF-alpha in cancer. Curr Opin Immunol 10:573–580

    Article  PubMed  CAS  Google Scholar 

  57. Balkwill F (2002) Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 13:135–141

    Article  PubMed  CAS  Google Scholar 

  58. Saren P, Welgus HG, Kovanen PT (1996) TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol 157:4159–4165

    PubMed  CAS  Google Scholar 

  59. Oster W, Lindemann A, Horn S, Mertelsmann R, Herrmann F (1987) Tumor necrosis factor (TNF)-alpha but not TNF-beta induces secretion of colony stimulating factor for macrophages (CSF-1) by human monocytes. Blood 70:1700–1703

    PubMed  CAS  Google Scholar 

  60. Zins K, Abraham D, Sioud M, Aharinejad S (2007) Colon cancer cell-derived tumor necrosis factor-alpha mediates the tumor growth-promoting response in macrophages by up-regulating the colony-stimulating factor-1 pathway. Cancer Res 67:1038–1045

    Article  PubMed  CAS  Google Scholar 

  61. Mroczko B, Groblewska M, Wereszczynska-Siemiatkowska U, Okulczyk B, Kedra B, Laszewicz W, Dabrowski A, Szmitkowski M (2007) Serum macrophage-colony stimulating factor levels in colorectal cancer patients correlate with lymph node metastasis and poor prognosis. Clin Chim Acta 380:208–212

    Article  PubMed  CAS  Google Scholar 

  62. Kaminska J, Nowacki MP, Kowalska M, Rysinska A, Chwalinski M, Fuksiewicz M, Michalski W, Chechlinska M (2005) Clinical significance of serum cytokine measurements in untreated colorectal cancer patients: soluble tumor necrosis factor receptor type I – an independent prognostic factor. Tumour Biol 26:186–194

    Article  PubMed  CAS  Google Scholar 

  63. Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, Binder C (2004) Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25:1543–1549

    Article  PubMed  CAS  Google Scholar 

  64. Brown PD, Levy AT, Margulies IM, Liotta LA, Stetler-Stevenson WG (1990) Independent expression and cellular processing of Mr 72,000 type IV collagenase and interstitial collagenase in human tumorigenic cell lines. Cancer Res 50:6184–6191

    PubMed  CAS  Google Scholar 

  65. Overall CM, Wrana JL, Sodek J (1991) Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. J Biol Chem 266:14064–14071

    PubMed  CAS  Google Scholar 

  66. Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H, Nabeshima K (1995) The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 55:434–439

    PubMed  CAS  Google Scholar 

  67. Kanekura T, Chen X, Kanzaki T (2002) Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. Int J Cancer 99:520–528

    Article  PubMed  CAS  Google Scholar 

  68. Kataoka H, DeCastro R, Zucker S, Biswas C (1993) Tumor cell-derived collagenase-stimulatory factor increases expression of interstitial collagenase, stromelysin, and 72-kDa gelatinase. Cancer Res 53:3154–3158

    PubMed  CAS  Google Scholar 

  69. Abraham D, Zins K, Sioud M, Lucas T, Aharinejad S (2008) Host CD147 blockade by small interfering RNAs suppresses growth of human colon cancer xenografts. Front Biosci 13:5571–5579

    Article  PubMed  CAS  Google Scholar 

  70. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  71. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C (2002) Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 32:355–357

    Article  PubMed  CAS  Google Scholar 

  73. Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA (2000) Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 60:2562–2566

    PubMed  CAS  Google Scholar 

  74. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5:1597–1601

    Article  PubMed  CAS  Google Scholar 

  75. Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7:513–520

    Article  PubMed  CAS  Google Scholar 

  76. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  PubMed  CAS  Google Scholar 

  77. McDermott RS, Deneux L, Mosseri V, Vedrenne J, Clough K, Fourquet A, Rodriguez J, Cosset JM, Sastre X, Beuzeboc P, Pouillart P, Scholl SM (2002) Circulating macrophage colony stimulating factor as a marker of tumour progression. Eur Cytokine Netw 13:121–127

    PubMed  CAS  Google Scholar 

  78. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65:5278–5283

    Article  PubMed  CAS  Google Scholar 

  79. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  PubMed  CAS  Google Scholar 

  80. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32

    Article  PubMed  CAS  Google Scholar 

  81. Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, Rettig WJ (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 274:36505–36512

    Article  PubMed  CAS  Google Scholar 

  82. Sato T, Sakai T, Noguchi Y, Takita M, Hirakawa S, Ito A (2004) Tumor-stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases. Gynecol Oncol 92:47–56

    Article  PubMed  CAS  Google Scholar 

  83. De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C, Mareel M (2004) Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 18:1016–1018

    PubMed  Google Scholar 

  84. Li G, Satyamoorthy K, Meier F, Berking C, Bogenrieder T, Herlyn M (2003) Function and regulation of melanoma-stromal fibroblast interactions: when seeds meet soil. Oncogene 22:3162–3171

    Article  PubMed  CAS  Google Scholar 

  85. Lewis MP, Lygoe KA, Nystrom ML, Anderson WP, Speight PM, Marshall JF, Thomas GJ (2004) Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer 90:822–832

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Orimo A, Tomioka Y, Shimizu Y, Sato M, Oigawa S, Kamata K, Nogi Y, Inoue S, Takahashi M, Hata T, Muramatsu M (2001) Cancer-associated myofibroblasts possess various factors to promote endometrial tumor progression. Clin Cancer Res 7:3097–3105

    PubMed  CAS  Google Scholar 

  87. Micke P, Ostman A (2005) Exploring the tumour environment: cancer-associated fibroblasts as targets in cancer therapy. Expert Opin Ther Targets 9:1217–1233

    Article  PubMed  CAS  Google Scholar 

  88. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  PubMed  CAS  Google Scholar 

  89. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835

    Article  PubMed  CAS  Google Scholar 

  90. Kowanetz M, Ferrara N (2006) Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 12:5018–5022

    Article  PubMed  CAS  Google Scholar 

  91. Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312:549–560

    Article  PubMed  CAS  Google Scholar 

  92. Cao R, Bjorndahl MA, Religa P, Clasper S, Garvin S, Galter D, Meister B, Ikomi F, Tritsaris K, Dissing S, Ohhashi T, Jackson DG, Cao Y (2004) PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6:333–345

    Article  PubMed  CAS  Google Scholar 

  93. Fidler IJ, Ellis LM (1994) The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79:185–188

    Article  PubMed  CAS  Google Scholar 

  94. Bergom C, Gao C, Newman PJ (2005) Mechanisms of PECAM-1-mediated cytoprotection and implications for cancer cell survival. Leuk Lymphoma 46:1409–1421

    Article  PubMed  CAS  Google Scholar 

  95. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    Article  PubMed  CAS  Google Scholar 

  96. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425:307–311

    Article  PubMed  CAS  Google Scholar 

  97. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433

    Article  PubMed  CAS  Google Scholar 

  98. Noel A, Jost M, Maquoi E (2007) Matrix metalloproteinases at cancer tumor-host interface. Semin Cell Dev Biol 79:52–60

    Google Scholar 

  99. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539

    Article  PubMed  CAS  Google Scholar 

  100. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Andreasen PA, Kjoller L, Christensen L, Duffy MJ (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72:1–22

    Article  PubMed  CAS  Google Scholar 

  102. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34

    Article  PubMed  CAS  Google Scholar 

  103. Creemers LB, Hoeben KA, Jansen DC, Buttle DJ, Beertsen W, Everts V (1998) Participation of intracellular cysteine proteinases, in particular cathepsin B, in degradation of collagen in periosteal tissue explants. Matrix Biol 16:575–584

    Article  PubMed  CAS  Google Scholar 

  104. Aigner A (2006) Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J Biotechnol 124:12–25

    Article  PubMed  CAS  Google Scholar 

  105. de Fougerolles A, Manoharan M, Meyers R, Vornlocher HP (2005) RNA interference in vivo: toward synthetic small inhibitory RNA-based therapeutics. Methods Enzymol 392:278–296

    Article  PubMed  Google Scholar 

  106. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A (2005) RNAi-mediated gene-targeting through systemic application of polyethyleneimine (PEI)-complexed siRNA in vivo. Gene Ther 12:461–466

    Article  PubMed  CAS  Google Scholar 

  107. Werth S, Urban-Klein B, Dai L, Hobel S, Grzelinski M, Bakowsky U, Czubayko F, Aigner A (2006) A low molecular weight fraction of polyethyleneimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J Control Release 112:257–270

    Article  PubMed  CAS  Google Scholar 

  108. Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M, Honma K, Nagahara S, Hanai K, Sano A, Kato T, Terada M, Ochiya T (2004) Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 32:e109

    Article  PubMed  PubMed Central  Google Scholar 

  109. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  PubMed  CAS  Google Scholar 

  110. Dillon CP, Sandy P, Nencioni A, Kissler S, Rubinson DA, Van Parijs L (2005) RNAi as an experimental and therapeutic tool to study and regulate physiological and disease processes. Annu Rev Physiol 67:147–173

    Article  PubMed  CAS  Google Scholar 

  111. Leung RK, Whittaker PA (2005) RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 107:222–239

    Article  PubMed  CAS  Google Scholar 

  112. Kim B, Tang Q, Biswas PS, Xu J, Schiffelers RM, Xie FY, Ansari AM, Scaria PV, Woodle MC, Lu P, Rouse BT (2004) Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am J Pathol 165:2177–2185

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Sioud M, Sørensen DR (2004) Systemic delivery of synthetic siRNAs. Methods Mol Biol 252:515–522

    PubMed  CAS  Google Scholar 

  114. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32:e149

    Article  PubMed  PubMed Central  Google Scholar 

  115. Arts GJ, Langemeijer E, Tissingh R, Ma L, Pavliska H, Dokic K, Dooijes R, Mesic E, Clasen R, Michiels F, van der Schueren J, Lambrecht M, Herman S, Brys R, Thys K, Hoffmann M, Tomme P, van Es H (2003) Adenoviral vectors expressing siRNAs for discovery and validation of gene function. Genome Res 13:2325–2332

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  116. Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717

    Article  PubMed  CAS  Google Scholar 

  117. Daka A, Peer D (2013) RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev 64:1508–1521

    Article  CAS  Google Scholar 

  118. Miele E, Spinelli GP, Miele E, Di Fabrizio E, Ferretti E, Tomao S, Gulino A (2012) Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomedicine 7:3637–3657

    PubMed  PubMed Central  Google Scholar 

  119. Singh S (2013) Nanomaterials as non-viral siRNA delivery agents for cancer therapy. Bioimpacts 3:53–65

    PubMed  PubMed Central  Google Scholar 

  120. Sahay G, Querbes W, Alabi C, Eltoukhy A, Sarkar S, Zurenko C, Karagiannis E, Love K, Chen D, Zoncu R, Buganim Y, Schroeder A, Langer R, Anderson DG (2013) Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol 2013:653–658

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouldy Sioud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zins, K., Sioud, M., Aharinejad, S., Lucas, T., Abraham, D. (2015). Modulating the Tumor Microenvironment with RNA Interference as a Cancer Treatment Strategy. In: Sioud, M. (eds) RNA Interference. Methods in Molecular Biology, vol 1218. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1538-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1538-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1537-8

  • Online ISBN: 978-1-4939-1538-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics