Skip to main content

Cotton Breeding for Fiber Quality Improvement

  • Chapter
  • First Online:

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 9))

Abstract

Cotton (Gossypium hirsutum L.) is the world’s leading fiber crop, grown or processed in many countries, providing a major contribution to their economies. Yield is economically most important to a producer which drives cultivar development and adoption; however, fiber quality is the primary focus for spinning mills. Cotton fiber quality must improve to remain competitive with synthetics due to increased demands for lightweight casual garments which require longer, stronger, and finer fibers. Improved cotton yields and fiber quality have continued to be realized through science-based plant breeding, particularly in countries and production systems with suitable climate and appropriate management inputs to maximize those improvements. The most significant challenge for cotton breeders has been to combine high yield with improved fiber quality, due to negative associations between yield and quality attributes in G. hirsutum. This chapter highlights practices to enable simultaneous improvement of yield and fiber quality during conventional breeding. There are adequate genetic resources available for innovative cotton breeders to make more progress, but new tools being offered by modern molecular technologies will achieve those gains more efficiently. Advances in fiber quality science have been made in cotton biotechnology – by improving our understanding of fiber development phases that contribute to fiber quality through gene discovery, genome mapping, and identification of linked molecular markers. Novel biotechnology traits have the potential to improve fiber yield and quality by altering the developmental phase associated with fibers per seed, fiber length, strength, and fineness. Biotechnology tools to facilitate improved conventional breeding through marker-assisted selection are also under development, particularly high-throughput techniques based on single nucleotide polymorphisms derived from next-generation sequencing. There are clearly great opportunities for better integration of conventional breeding and molecular biology, and as new GM traits are developed, a future challenge will be to combine multiple GM traits into elite cultivars. This could be assisted by the judicious use of molecular markers to herald a new age in cotton improvement. Cotton is one of the pioneer crops for the introduction of genetically modified (GM) insect and herbicide resistance, with about 80 % of global cotton being GM by 2012. That experience of research and deployment of these first-generation GM traits provides the foundation for development and exploitation of GM novel fiber property traits in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFIS:

Advanced Fiber Information System

AFLP:

Amplified fragment length polymorphisms

AOSCA:

Association of Official Seed Certifying Agencies

BAC:

Bacterial Artificial Chromosome

CesA:

Cellulose synthase A

CS-B:

Chromosome substitution

CSIRO:

Commonwealth Scientific and Industrial Research Organisation (Australia)

DNA:

Deoxyribonucleic acid

dpa:

Days post anthesis

eQTL:

Expression quantitative trait loci

FMT:

Fineness and maturity tester

GBS:

Genotype-by-sequencing

GM:

Genetically modified

GS:

Genomic selection

HD:

Homeodomain

HVI:

High volume instrumentation

IAA:

Indole-3-acetic acid

ISTA:

International Seed Testing Association

KAP61R:

Keratin-associated protein

KASPar:

KBioscience competitive allele-specific polymerase chain reaction assay

MABC:

Marker-assisted backcrossing

MAS:

Marker-assisted selection

MYB:

V-Myb avian myeloblastosis viral oncogene homolog

NGS:

Next-generation sequencing

NIL:

Near-isogenic line

OECD:

Organisation for Economic and Co-operation and Development

PCR:

Polymerase chain reaction

PHB:

Polyhydroxybutyrate

QTL:

Quantitative trait loci

RAD-Seq:

Restriction site-associated DNA sequencing

RAPD:

Restriction fragment length polymorphism

RIL:

Recombinant inbred line

RNAi:

RNA (ribonucleic acid) interference

SCW:

Secondary cell wall

SNP:

Single nucleotide polymorphisms

SSCA:

Southern Seed Certification Association

SSR:

Simple sequence repeats

SusA1:

Sucrose synthase A1

TILLING:

Targeting induced local lesions in genomes

TM-1:

Texas marker-1

XTH:

Xyloglucan endotransglycosylase

References

  1. Wendel JF, Albert VA. Phylogenetics of the cotton genus (Gossypium): character-state parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst Bot. 1992;17:115–43.

    Google Scholar 

  2. Seelanan T, Schnabel A, Wendel JF. Congruence and consensus in the cotton tribe. Syst Bot. 1997;22:259–90.

    Google Scholar 

  3. Fryxall PA. Taxonomy and germplasm resources. In: Kohel RJ, Lewis CF, editors. Cotton. Madison: American Society of Agronomy; 1984. p. 27–56.

    Google Scholar 

  4. Fryxall PA. A revised taxonomic interpretation of Gossypium L. (Malvacea). Rheedea. 1992;2:108–65.

    Google Scholar 

  5. Brubaker CL, Bourland FM, Wendel JE. The origin and domestication of cotton. In: Smith CW, Cothren JT, editors. Cotton: origin, history, technology and production. New York: Wiley; 1999. p. 3–31.

    Google Scholar 

  6. Percival AE, Wendel JE, Stewart JM. Taxonomy and germplasm resources. In: Smith CW, Cothren JT, editors. Cotton: origin, history, technology and production. New York: Wiley; 1999. p. 33–63.

    Google Scholar 

  7. Campbell BT, Saha S, Percy R, Frelichowski J, Jenkins JN, Park W, et al. Status of the global cotton germplasm resources. Crop Sci. 2010;50:61–79.

    Google Scholar 

  8. Wendel JF, Brubaker CL, Percival AE. Genetic diversity in Gossypium hirsutum and the origin of Upland cotton. Am J Bot. 1992;79:1291–310.

    Google Scholar 

  9. Wendel JF, Olsen PD, Stewart JM. Genetic diversity, introgression and independent domestication of Old World cultivated cottons. Am J Bot. 1989;76:1795–806.

    Google Scholar 

  10. Chandra M, Sreenivasan S. Studies on improved Gossypium arboreum cotton: part 1 – fibre quality parameters. Indian J Fibre Text. 2011;36:24–34.

    CAS  Google Scholar 

  11. Sauer JD. Historical geography of crop plants: a selected roster. Boca Raton: CRC Press; 1993. 309p.

    Google Scholar 

  12. Damp JE, Pearsall DM. Early cotton from coastal Ecuador. Econ Bot. 1994;48:163–5.

    Google Scholar 

  13. Gulati AN, Turner AJ. A note on the early history of cotton. J Text Inst Trans. 1929;20(1):T1–9.

    Google Scholar 

  14. Moore JH. Cotton breeding in the old south. Agric Hist. 1956;30:95–104.

    Google Scholar 

  15. Calhoun DS, Bowman DT, May OL. Pedigrees of Upland and Pima cotton cultivars released between 1970 and 1990, Technical bulletin 1017. Mississippi State: Mississippi Agricultural and Forestry Experiment Station; 1994. p. 42.

    Google Scholar 

  16. Adams G, Boyd S, Huffman M. The economic outlook for U.S. cotton. Memphis: National Cotton Council of America; 2012. 71pp.

    Google Scholar 

  17. Chapagain AK, Hoekstra AY, Savenije HHG, Gautam R. The water footprint of cotton consumption. Value of water research report series 18. UNESCO-IHE, Institute for Water Education, Delft. 39p. 2005. Available from: http://www.waterfootprint.org/Reports/Report18.pdf. Last accessed 26 June 2013.

  18. Stelly DM, Lacape J, Dessauw EGAD, Kohel RJ, Mergeai G, Sanamyan M, et al. International genetic, cytogenetic and germplasm resources for cotton genomics and genetic improvement. In: World cotton research conference-4. Sept 10–14. Lubbock; 2007. Available at http://www.icac.org/meetings/wcrc/wcrc4/presentations/start.htm. Last accessed 26 June 2013.

  19. Lubbers EL, Chee PW. The worldwide gene pool of G. hirsutum and its improvement. In: Paterson AH, editor. Genetics and genomics of cotton. New York: Springer; 2009. p. 23–52.

    Google Scholar 

  20. Percy RG. The worldwide gene pool of G. barbadense and its improvement. In: Paterson AH, editor. Genetics and genomics of cotton. New York: Springer; 2009. p. 53–68.

    Google Scholar 

  21. Kulkarni VN, Khadi BM, Maralappanavar MS, Deshapande LA, Narayannan SS. The worldwide gene pools of Gossypium arboreum L. and G. herbaceum L. and their improvement. In: Paterson AH, editor. Genetics and genomics of cotton. New York: Springer; 2009. p. 69–100.

    Google Scholar 

  22. Rahman M, Shaheen T, Tabbasam N, Iqbal MA, Ashraf M, Zafar Y, Paterson AH. Cotton genetic resources: a review. Agron Sust Dev. 2012;232:419–32.

    Google Scholar 

  23. Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, et al. A 3347-locus genetic recombination map of sequence tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics. 2004;166:389–417.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Blenda A, Fang DD, Rami J-F, Garsmeur O, Luo F, Lacape J-M. A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One. 2012;7:e45739. doi:10.1371/journal.pone.0045739. Epub 2012 Sep 24.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, et al. The cotton genomes, their polyploidies, and the evolution of spinnable fibers. Nature. 2012;492:423–7.

    CAS  PubMed  Google Scholar 

  26. Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, et al. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet. 2012;44:1098–103.

    CAS  PubMed  Google Scholar 

  27. May OL. Genetic variation in fiber quality. In: Basra AS, editor. Cotton fibers: developmental biology, quality improvement, and textile processing. New York: Haworth Press; 1999. p. 183–229.

    Google Scholar 

  28. Small RL, Ryburn JA, Wendel JF. Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Mol Biol Evol. 1999;16:491–501.

    CAS  PubMed  Google Scholar 

  29. Iqbal MJ, Reddy OUK, El-Zik KM, Pepper AE. A genetic bottleneck in the “evolution under domestication” of Upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor Appl Genet. 2001;103:547–54.

    CAS  Google Scholar 

  30. Chaudhary L, Sindhu A, Kumar M, Kumar R, Saini M. Estimation of genetic divergence among some cotton varieties by RAPD analysis. J Plant Breed Crop Sci. 2010;2:39–43.

    CAS  Google Scholar 

  31. Meredith WR, Bridge RR. Genetic contributions to yield changes in Upland cotton. In: Fehr WR, editor. Genetic contributions to yield gains in five major crop plants, CSSA special publication number, vol. 7. Madison: Crop Science Society of America; 1984. p. 75–87.

    Google Scholar 

  32. Paterson AH, Bowman RK, Brown SM, Chee PW, Gannaway JR, Gingle AR, et al. Reducing the genetic vulnerability of cotton. Crop Sci. 2004;44:1900–1.

    Google Scholar 

  33. Meredith WR. Contributions of introductions to cotton improvement. In: Shands HL, Wiesner LE, editors. Use of plant introductions in cultivar development, part I, CSSA special publication no 17. Madison: Crop Science Society of America; 1991. p. 127–46.

    Google Scholar 

  34. Bowman DT, May OL, Calhoun DS. Genetic base of Upland cotton cultivars released between 1970 and 1990. Crop Sci. 1996;36:577–81.

    Google Scholar 

  35. Ahmad A, Zhang Y, Cao X-F. Decoding the epigenetic language of plant development. Mol Plant. 2010;3:719–28.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Keyte AL, Percifield R, Liu B, Wendel JF. Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). J Hered. 2006;97:444–50.

    CAS  PubMed  Google Scholar 

  37. McCarty JC, Jenkins JN. Registration of 79 day-neutral primitive cotton germplasm lines. Crop Sci. 1993;33:351.

    Google Scholar 

  38. Meyer JR, Meyer VG. Origin and inheritance of nectariless cotton. Crop Sci. 1961;1:167–9.

    Google Scholar 

  39. Meyer VG. Male sterility in Gossypium harknessii. J Hered. 1975;66:23–7.

    Google Scholar 

  40. Robinson AF, Bell AA, Dighe ND, Menz MA, Nichols RL, Stelly DM. Introgression of resistance to nematode Rotylenchulus reniformis into Upland cotton (Gossypium hirsutum) from Gossypium longicalyx. Crop Sci. 2007;47:1865–77.

    Google Scholar 

  41. Mergaei G, Baudoin J-P, Vroh I. Exploitation of trispecific hybrids to introgress the glandless seed and glanded plant trait of Gossypium sturtianum Willis into G. hirsutum L. Biotechnol Agron Soc Environ. 1997;1:272–7.

    Google Scholar 

  42. Wu Y, Machado A, White RG, Llewellyn DJ, Dennis ES. Expression profiling identifies genes expressed during early lint fiber initiation in cotton. Plant Cell Physiol. 2006;47:107–27.

    CAS  PubMed  Google Scholar 

  43. McCallum CM, Comai L, Greene EA, Henikoff S. Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol. 2000;123(2):439–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Worley S, Ramey HH, Harrell DC, Culp TW. Ontogenetic model of cotton yield. Crop Sci. 1976;16:30–4.

    Google Scholar 

  45. Meredith WR, Bridge R. Breakup of linkage blocks in cotton, Gossypium hirsutum L. Crop Sci. 1971;11:695–8.

    Google Scholar 

  46. Zeng LH, Meredith WR. Associations among lint yield, yield components, and fiber properties in an introgressed population of cotton. Crop Sci. 2009;49:1647–54.

    Google Scholar 

  47. Bednarz CW, Nichols RL, Brown SM. Plant density modifications of cotton within-boll yield components. Crop Sci. 2006;46:2076–80.

    Google Scholar 

  48. Tang B, Jenkins JN, Watson CE, McCarty JC, Creech RG. Evaluation of genetic variances, heritabilities, and correlations for yield and fiber traits among cotton F-2 hybrid populations. Euphytica. 1996;91:315–22.

    Google Scholar 

  49. Pahlavani MH, Miri AA, Kazemi G. Response of oil and protein content to seed size in cotton. Int J Agric Bot. 2008;10:643–7.

    Google Scholar 

  50. Liu SM, Constable GA, Reid PE, Stiller WN, Cullis BR. The interaction between breeding and crop management in improved cotton yield. Field Crops Res 2013; 129. in press.

    Google Scholar 

  51. Constable GA, Thomson N, Reid PE. Approaches utilized in breeding and development of cotton cultivars in Australia. In: Jenkins JN, Saha S, editors. Genetic improvement of cotton: emerging technologies. Enfield: Science Publishers; 2001. p. 1–15.

    Google Scholar 

  52. Smith CW, Moser HS, Cantrell RG, Oakley SR. History of cultivar development in the United States. In: Smith CW, Cothren JT, editors. Cotton: origin, history, technology and production. New York: Wiley; 1999. p. 99–171.

    Google Scholar 

  53. Knox OG, Constable GA, Pyke B, Vadakattu GVSR. Environmental impact of conventional and Bt insecticidal cotton expressing one and two Cry genes in Australia. Aust J Agric Res. 2006;57:501–9.

    Google Scholar 

  54. James C. Global status report on Biotech crops: ISAAA brief 44. Manila, 20 Feb 2013. [Internet] International Service for the Acquisition of Agri-biotech Applications. Available from: http://www.isaaa.org/

  55. Constable G, Llewellyn D, Wilson L, Stiller W. An industry transformed: the impact of GM technology on Australian cotton production. Farm Policy J. 2011;8:23–41.

    Google Scholar 

  56. Yang WH, Tang SR. Analysis on the cotton fiber quality sampled from the field of production during the 11th five- year plan. China Fiber Insp. 2011;15:18–22.

    Google Scholar 

  57. Culp TW, Green CC. Performance of obsolete and current cultivars and Pee Dee germplasm lines of cotton. Crop Sci. 1992;32:35–41.

    Google Scholar 

  58. Bassett DM, Hyer A. Acala cotton in California: 60 years of varietal improvement. In: Nelson T, editor. Proceedings of the Beltwide Cotton Conferences. Jan 6–11; New Orleans. National Cotton Council; 1985. p. 76.

    Google Scholar 

  59. Zhang JF, Lu Y, Adragna H, Hughs E. Genetic improvement of New Mexico Acala cotton germplasm and their genetic diversity. Crop Sci. 2005;45:2363–73.

    CAS  Google Scholar 

  60. Bowman DT, Gutierrez OA. Sources of fiber strength in the U.S. Upland cotton crop from 1980 to 2000. J Cotton Sci. 2003;7:164–9.

    Google Scholar 

  61. Ma SP, Cai FC, Wei XZ, Xiang SK. The status quo of China’s cotton quality and its international status. China Cotton. 2002;29(10):1–31.

    Google Scholar 

  62. Tang SR, Xiao YN, Yang WH. The analysis of raw cotton fiber quality between region and year in China. Chin Agric Sci Bull. 2006;22:177–83.

    Google Scholar 

  63. Cotton Corporation of India. Staple-wise production of cotton. [Cited 3 Apr 2013]. Available from: htpp://www.cotcorp.gov.in/statistics.aspx?pageid = 2

  64. USDA-AMS. Annual reports 2001–2007.

    Google Scholar 

  65. USDA-AMS. Marketing news. [Citied 3 Apr 2013]. Available from: http://marketnews.usda.gov/portal/cn

  66. Australian Cotton Shippers Association. Aust Cotton crop reports 2006–2012. [Citied 3 Apr 2013]. Available from: http://www.austcottonshippers.com.au/

  67. Ramey HH. Classing of fiber. In: Smith CW, Cothren JT, editors. Cotton: origin, history, technology, and production. New York: Wiley; 1999. p. 709–27.

    Google Scholar 

  68. Naylor GRS, Purmalis M. Update on cottonscan: an instrument for rapid and direct measurement of fiber maturity and fineness. In: Dugger P, Richter D, editors. Proceedings of the Beltwide Cotton Conference. Jan 4–7; New Orleans. National Cotton Council; 2005. p. 2302–6.

    Google Scholar 

  69. Meredith WR, Culp TW, Robert KQ, Ruppenicker GF, Anthony WS, Williford JR. Determining future cotton variety fiber quality objectives. Text Res J. 1991;61:715–20.

    Google Scholar 

  70. Price J. Cotton breeding directions: the yarn producer’s viewpoint. ICAC Rec. 1990;8:12–5.

    Google Scholar 

  71. Benzina H, Hequet E, Abidi N, Gannaway J, Drean JY, Harzallah O. Using fiber elongation to improve genetic screening in cotton breeding programs. Text Res J. 2007;77:770–8.

    CAS  Google Scholar 

  72. Hovav R, Udall JA, Chaudhary B, Rapp R, Flagel L, Wendel JF. Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant. Proc Natl Acad Sci U S A. 2008;105:6191–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Wilkins TA, Jernstedt JA. Molecular genetics of developing cotton fibers. In: Basra AS, editor. Cotton fibers: developmental biology, quality improvement, and textile processing. New York: Hawthorne Press; 1999. p. 231–69.

    Google Scholar 

  74. Van’t Hof J. Production of micronucleoli and the onset of cotton fiber growth. Planta. 1998;205:561–6.

    Google Scholar 

  75. Wilkins TA, Arpat AB. The cotton fiber transcriptome. Physiol Planta. 2005;124:295–300.

    CAS  Google Scholar 

  76. Ruan YL, Llewellyn DJ, Furbank RT. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+transporters and expansin. Plant Cell. 2001;13:47–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Basra AS, Malik CP. Development of the cotton fiber. Int Rev Cytol. 1984;89:65–113.

    CAS  Google Scholar 

  78. Seagull RW. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development. J Cell Sci. 1992;101:561–77.

    Google Scholar 

  79. Schubert AM, Benedict CR, Berlin JD, Kohel RJ. Cotton fiber development- kinetics of cell elongation and secondary wall thickening. Crop Sci. 1973;13:704–9.

    Google Scholar 

  80. Jasdanwala RT, Singh YD, Chinoy JJ. Auxin metabolism in developing cotton hairs. J Exp Bot. 1977;28:1111–6.

    CAS  Google Scholar 

  81. Naithani SC, Rao NR, Singh YD. Physiological and biochemical changes associated with cotton fibre development. Physiol Plant. 1982;54:225–9.

    CAS  Google Scholar 

  82. Berlin JD. The outer epidermis of the cottonseed. In: Mauney JR, Stewart JMD, editors. Cotton physiology. Memphis: The Cotton Foundation; 1986. p. 375–414.

    Google Scholar 

  83. Wang Y, Shu H, Chen B, McGriffen Jr ME, Zhang W, Xu N, Zhou Z. The rate of cellulose increase is highly related to cotton fibre strength and is significantly determined by its genetic background and boll period temperature. J Plant Growth Regul. 2009;57:203–9.

    CAS  Google Scholar 

  84. Haigler CH, Rao NR, Roberts EM, Huang J, Upchurch DR, Trolinder NL. Cultivated ovules as models for cotton fiber development under low temperatures. Plant Physiol. 2007;95:88–96.

    Google Scholar 

  85. Machado A, Wu Y, Yang Y, Llewellyn D, Dennis ES. The MYB transcription factor GhMYB25 regulates early fiber and trichome development. Plant J. 2009;59:52–62.

    CAS  PubMed  Google Scholar 

  86. Walford S, Wu Y, Llewellyn DJ, Dennis ES. GhMYB25-like: a key factor in early cotton fiber development. Plant J. 2011;5:785–97.

    Google Scholar 

  87. Walford SA, Wu YR, Llewellyn DJ, Dennis ES. Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1. Plant J. 2012;71:464–78.

    CAS  PubMed  Google Scholar 

  88. Graves AD, Stewart MJ. Chronology of the differentiation of cotton (Gossypium hirsutum L.) fiber cells. Planta. 1988;175:254–8.

    CAS  PubMed  Google Scholar 

  89. Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, Allen RD. Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol. 2005;46:1384–91.

    CAS  PubMed  Google Scholar 

  90. Zhang M, Zheng X, Song S, Zeng Q, Hou L, Li D, et al. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol. 2011;29(5):453–8.

    CAS  PubMed  Google Scholar 

  91. Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y, et al. Xyloglucan endotransglycosylase-hydrolase genes in cotton and their role in fiber elongation. Planta. 2010;232:1191–205.

    CAS  PubMed  Google Scholar 

  92. Ruan YL, Chourey PS. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol. 1998;118:399–406.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Ruan YL, Llewellyn DJ, Furbank RT, Chourey PS. The delayed initiation and slow elongation of fuzz-like short fiber cells in relation to altered patterns of sucrose synthase expression and plasmodesmata gating in a lintless mutant of cotton. J Exp Bot. 2005;56:977–84.

    CAS  PubMed  Google Scholar 

  94. Jiang Y, Guo W, Zhu H, Ruan YL, Zhang T. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol J. 2012;10:301–12.

    CAS  PubMed  Google Scholar 

  95. Xu SM, Brill E, Llewellyn DJ, Furbank RT, Ruan YL. Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Mol Plant. 2012;5(2):430–41.

    CAS  PubMed  Google Scholar 

  96. Gou JY, Wang LJ, Chen SP, Hu WL, Chen XY. Gene expression and metabolite profiles of cotton fibre during cell elongation and secondary cell wall synthesis. Cell Res. 2007;17:422–34.

    CAS  PubMed  Google Scholar 

  97. Li X, Wang XD, Zhao X, Dutt Y. Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell Rep. 2004;22:691–67.

    CAS  PubMed  Google Scholar 

  98. Stewart JM, Oosterhuis D, Heitholt JJ, Mauney JR. Genetic engineering applications in crop improvement. In: Stewart JM, Oosterhuis D, Heitholt JJ, Mauney JR, editors. Physiology of cotton. New York: Springer; 2010. p. 394–560.

    Google Scholar 

  99. John ME, Keller G. Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci U S A. 1996;93:1268–77.

    Google Scholar 

  100. Wrobel M, Zebrowski J, Szopa J. Polyhydroxybutyrate synthesis in transgenic flax. J Biotechnol. 2004;107:41–54.

    CAS  PubMed  Google Scholar 

  101. Dalton DA, Ma C, Shrestha S, Kitin P, Strauss S. Trade-offs between biomass growth and inducible biosynthesis of polyhydroxybutyrate in transgenic poplar. Plant Biotech J. 2011;9:759–67.

    CAS  Google Scholar 

  102. Zhang ZL, Liu ZL, Zhou BL, Chen S, Zhang XG. Transgenic cotton (Gossypium hirsutum L.) with strength-enhanced fiber expressing rabbit keratin gene. Cotton Sci. 2004;16:72–6.

    CAS  Google Scholar 

  103. Huang QS, Liu X, Wang YQ, Wang DM, Yang KR, Li JP, Ge F. Transformation of spider silk protein gene into the apical meristems of Gossypium barbadense via particle bombardment. (Abstract in English). Xinjiang Agric Sci. 2004; 41:248–50.

    Google Scholar 

  104. Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet. 2004;108:280–91.

    CAS  PubMed  Google Scholar 

  105. Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S. SNP markers and their impact on plant breeding. Int. J Plant Genomics 2012; 728398. doi: 10.115/2012/728398. Epub 2012 Dec 18.

    Google Scholar 

  106. Boopathi NM, Thiyagu K, Urbi B, Santhoshkumar M, Gopikrishnan A, et al. Marker-assisted selection as next generation strategy for genetic improvement of productivity and quality: can it be realized in cotton. Int J Plant Genomics. 2011;2011:670104. doi:10.1155/2011/670104. Epub 2011 Mar 20.

    PubMed Central  PubMed  Google Scholar 

  107. Chee PW, Campbell BT. Bridging classical and molecular genetics of cotton fiber quality and development. In: Paterson AH, editor. Plant genetics and genomics of cotton. New York: Springer; 2009. p. 283–311.

    Google Scholar 

  108. Ma X, Ding Y, Zhou B, Guo W, Lv Y, Zhu X, Zhang T. QTL mapping in A-genome diploid Asiatic cotton and their congruence analysis with AD-genome tetraploid in genus Gossypium. J Genet Genomics. 2008;35(12):751–62.

    PubMed  Google Scholar 

  109. Jenkins JN, McCarty JC, Wu JX, Saha S, Gutierrez O, Hayes R, Stelly DM. Genetic effects of thirteen Gossypium barbadense L. Chromosome substitution lines in topcrosses with Upland cotton cultivars: II. Fiber quality traits. Crop Sci. 2007;47:561–76.

    Google Scholar 

  110. Jiang CX, Wright RJ, El-Zik KM, Paterson AH. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci U S A. 1998;95:4419–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Kohel RJ, Yu JZ, Park Y-H, Lazo G. Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica. 2001;121:163–72.

    CAS  Google Scholar 

  112. Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ. QTL analysis of genotype x environment interactions affecting cotton fiber quality. Theor Appl Genet. 2003;106:384–96.

    CAS  PubMed  Google Scholar 

  113. Lacape J-M, Nguyen T-B, Courtois B, Belot J-L, Giband M, Gourlot J-P, et al. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum _ Gossypium barbadense backcross generations. Crop Sci. 2005;45:123–40.

    CAS  Google Scholar 

  114. Lacape J-M, Nguyen TB, Thibivilliers S, Courtois B, Bojinov BM, Cantrell RG, et al. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome. 2003;46:612–26.

    CAS  PubMed  Google Scholar 

  115. Shen X, Cao Z, Singh R, Lubbers EL, Xu P, Smith CW, Paterson AH, Chee PW. Efficacy of qFL-chr1, a quantitative trait locus for fiber length in cotton (Gossypium spp.). Crop Sci. 2011;51:2005–10.

    Google Scholar 

  116. Zhang TZ, Yuan Y, Yu J, Guo W, Kohel RJ. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet. 2003;106:262–8.

    CAS  PubMed  Google Scholar 

  117. Guo WZ, Zhang TZ, Ding YZ, Zhu YC, Shen XL, Zhu XF. Molecular marker assisted selection and pyramiding of two QTLs for fiber strength in Upland cotton. (Abstract in English). Yi Chuan Xue Bao. 2005; 32:1275–85.

    Google Scholar 

  118. Stelly DM, Saha S, Raska DA, Jenkins JN, McCarty JC, Guiterrez OA. Registration of 17 Upland (Gossypium hirsutum) cotton germplasm lines disomic for different G. barbadense chromosome or arm substitutions. Crop Sci. 2005;45:2663–5.

    Google Scholar 

  119. Zhang Z, Rong J, Waghmare VN, Chee PW, May OL, Wright RJ, et al. QTL alleles for improved fiber quality from a wild Hawaiian cotton, Gossypium tomentosum. Theor Appl Genet. 2011;123:1075–88.

    PubMed  Google Scholar 

  120. Lacape JM, Claverie M, Jacobs J, Llewellyn D, Arioli T, Derycker R, et al. Reconciliation of genetic and genomic approaches to cotton fiber quality improvement. In: World cotton research conference-4. Sept 10–14. Lubbock; 2007. Available at http://www.icac.org/meetings/wcrc/wcrc4/presentations/start.htm. Last accessed 26 June 2013.

  121. Chen X, Guo W, Liu B, Zhang Y, Song X, Cheng Y, Zhang L, Zhang T. Molecular mechanisms of fiber differential development between G. barbadense and G. hirsutum revealed by genetical genomics. PLOS One. 2012;7:e30056. doi:10.1371/journal.pone.0030056. Epub 2012 Jan 11.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Chen ZJ, Lee JJ, Woodward AW, Han Z, Ha M, Lackey E. Functional genomic analysis of early events in cotton fiber development. In: World cotton research conference-4. Sept 10–14. Lubbock; 2007. Available at http://www.icac.org/meetings/wcrc/wcrc4/presentations/start.htm. Last accessed 26 June 2013.

  123. Kumar S, Banks TW, Cloutier S. SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics. 2012;2012:831460. doi:10.1155/2012/831460. Epub 2012 Nov 22.

    PubMed Central  PubMed  Google Scholar 

  124. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379. doi:10.1371/journal.pone.0019379. Epub 2011 May 4.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Nakaya A, Isobe SN. Will genomic selection be a practical method for plant breeding. Ann Bot. 2012;110:1303–16.

    PubMed Central  PubMed  Google Scholar 

  126. Rahman M, Zafar Y, Paterson AH. Gossypium DNA markers: types, numbers and uses. In: Paterson AH, editor. Genetics and genomics of cotton. New York: Springer; 2009. p. 101–39.

    Google Scholar 

  127. Chen X, Guo W, Zhang T. Cotton omics in China. Plant Omics J. 2011;4:278–87.

    CAS  Google Scholar 

  128. Mishra GP, Tiwari SK, Singh R, Singh SB. Marker assisted selection for improvement of quality traits in crop plants. In: Singh RK, Singh R, GuoYou Y, Selvi A, Rao GP, editors. Molecular plant breeding: principle, method and application. Houston: Studium Press LLC; 2010. p. 343–65.

    Google Scholar 

  129. Miedaner T, Korzun V. Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology. 2012;102:560–6.

    PubMed  Google Scholar 

  130. Gao S, Martinez C, Skinner DJ, Krivanek AF, Crouch JH, Xu Y. Development of a seed DNA-based genotyping system for marker-assisted selection in maize. Mol Breed. 2008;22:477–94.

    CAS  Google Scholar 

  131. Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA. Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet. 2012;124:1201–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Broeders SRM, De Keersmaecker SCJ, Roosens NHC. How to deal with the upcoming challenges in GMO detection in food and feed. J Biomed Biotechnol. 2012;12:402418. doi:10.1155/2012/402418. Epub 2012 Oct 21.

    Google Scholar 

  133. Lee J. Cotton. In: Fehr WR, editor. Principles of cultivar development, Crop species, vol. 2. Ames: Iowa State University; 1987. p. 126–60.

    Google Scholar 

  134. Calhoun S, Bowman DT. Techniques for development of new cultivars. In: Smith CW, Cothren JT, editors. Cotton: origin, history, technology and production. New York: Wiley; 1999. p. 361–413.

    Google Scholar 

  135. Campbell BT, Bowman DT, Weaver DB. Heterotic effects in topcrosses of modern and obsolete cotton cultivars. Crop Sci. 2008;48:593–600.

    Google Scholar 

  136. Bowman DT. Attributes of public and private cotton breeding programs. J Cotton Sci. 2000;4:130–6.

    Google Scholar 

  137. Miller PA, Rawlings JO. Breakup of initial linkage blocks through intermating in a cotton breeding population. Crop Sci. 1967;7:199–204.

    Google Scholar 

  138. Clement JD, Constable GA, Stiller WN, Liu SM. Negative associations still exist between yield and fibre quality in cotton breeding programs in Australia and USA. Field Crop Res. 2012;128:1–7.

    Google Scholar 

  139. Culp TW, Harrell DC. Breeding methods for improving yield and fiber quality of Upland cotton (Gossypium hirsutum L.). Crop Sci. 1973;13:686–9.

    Google Scholar 

  140. Scholl RL, Miller PA. Genetic association between yield and fiber strength in Upland cotton. Crop Sci. 1976;16:780–3.

    Google Scholar 

  141. Meredith WR. Backcross breeding to increase fiber strength of cotton. Crop Sci. 1977;17:172–5.

    Google Scholar 

  142. Hague SS, Smith CW, Berger G, Clement J, Jones D. Variation in an extra-long staple upland x medium staple Upland cotton F2 population. J Cotton Sci. 2011;15:265–70.

    Google Scholar 

  143. Smith CW, Hague S, Hequet E, Thaxton PS, Brown IN. Development of extra-long staple Upland cotton. Crop Sci. 2008;48:1823–31.

    CAS  Google Scholar 

  144. Auld DL, Bechere E, Ethridge MD, Becker WD, Hequet EF, Cantrell RG. Registration of TTU 202-1107-B and TTU 271-2155-C mutant germplasm lines of upland cotton with improved fiber quality. Crop Sci. 2000;40:1835–6.

    Google Scholar 

  145. Culp TW, Harrell DC, Kerr T. Some genetic implications in the transfer of high fiber strength genes to cotton. Crop Sci. 1979;19:481–4.

    Google Scholar 

  146. Jenkins JN, McCarty JC, Wu JX, Gutierrez O. Genetic variance components and genetic effects among eleven diverse Upland cotton lines and their F2 hybrids. Euphytica. 2009;167:397–408.

    CAS  Google Scholar 

  147. Hinze LL, Campbell BT, Kohel RJ. Performance and combining ability in cotton (Gossypium hirsutum L.) populations with diverse parents. Euphytica. 2011;181:115–25.

    Google Scholar 

  148. Yuan YL, Zhang TZ, Guo WZ, Pan JJ, Kohel RJ. Diallel analysis of superior fiber quality properties in selected Upland cottons. Acta Genet Sin. 2005;32:79–85.

    PubMed  Google Scholar 

  149. Smith CW, Braden CA, Hequet EF. Generation means analysis of near-long-staple fiber length in TAM 94 L-25 Upland cotton. Crop Sci. 2009;49:1638–46.

    Google Scholar 

  150. Wu J, McCarty JC, Jenkins JN, Meredith WR. Breeding potential of introgressions into upland cotton: genetic efforts and heterosis. Plant Breed. 2010;129:526–32.

    Google Scholar 

  151. Quisenberry JE. Inheritance of fiber properties among crosses of Acala and high plains cultivars of Upland cotton. Crop Sci. 1975;15:202–4.

    Google Scholar 

  152. May OL, Green CC. Genetic variation for fiber properties in elite Pee-Dee cotton populations. Crop Sci. 1994;34:684–90.

    Google Scholar 

  153. Cheatham CL, Jenkins JN, McCarty Jr JC, Watson CE, Wu J. Genetic variances and combining ability of crosses of American cultivars, Australian cultivars and wild cotton. J Cotton Sci. 2003;7:16–22.

    Google Scholar 

  154. Meredith WR. Quantitative genetics. In: Kohel RJ, Lewis CF, editors. Cotton. Madison: American Society of Agronomy; 1984. p. 131–50.

    Google Scholar 

  155. Stiller W, Reid P, Constable G. Lessons learnt in developing transgenic cotton (Gossypium hirsutum) varieties. In: Mercer CF, editor. Breeding for success: diversity in action. Proceedings of the 13th Australasian plant breeding conference; 2006 April 18–21; Christchurch; 2006. p. 56–61.

    Google Scholar 

  156. Iyengar RLN, Gupta AK. Some functions involving fiber properties for estimating yarn tenacity. Text Res J. 1974;44:492–4.

    Google Scholar 

  157. Subramanian TA, Ganesh K, Bandyopadhyay S. A generalized equation for predicting the lea strength of ring-spun cotton yarns. J Text Inst. 1973;65:307–13.

    Google Scholar 

  158. Suh MW, Koo HJ. Prediction of yarn tensile properties based on HVI testing of 36 U.S. Upland cottons. In: Dugger P, Richter D, editors. Proceedings of Beltwide cotton conference. Jan 5–9; San Diego: National Cotton Council; 1998. p. 786–90.

    Google Scholar 

  159. Krifa M. Fiber length distribution in cotton processing: dominant features and interaction effects. Text Res J. 2006;76:426–35.

    CAS  Google Scholar 

  160. Hequet E, Abidi N, Gannaway JR. Relationship between HVI, AFIS, and yarn tensile properties. In: World cotton research conference-4. Sept 10–14. Lubbock; 2007. Available at http://www.icac.org/meetings/wcrc/wcrc4/presentations/start.htm. Last accessed 26 June 2013.

  161. Ureyen ME, Kadoglu H. Interactions between AFIS fibre properties and ring cotton yarn properties. Tekstil Ve Konfeksiyon. 2008;18:8–14.

    Google Scholar 

  162. May OL, Jividen GM. Genetic modification of cotton fiber properties as measured by single- and high-volume instruments. Crop Sci. 1999;39:328–33.

    Google Scholar 

  163. Lord E, Heap SA. The origin and assessment of cotton fiber maturity. Manchester: International Institute for Cotton; 1988. 38p.

    Google Scholar 

  164. Naylor GRS, Purmalis M. Update on cottonscan: an instrument for rapid and direct measurement of fiber maturity and fineness. In: Dugger P, Richter D, editors. Proceedings of the Beltwide cotton conferences. Jan 4–7; New Orleans: National Cotton Council; 2005. p. 2302–6.

    Google Scholar 

  165. Bragg CK, Schofner FM. A rapid, direct measurement of short fiber content. Text Res J. 1993;63:171–6.

    Google Scholar 

  166. Van Deynze AE, Sundstrom FJ, Bradford KJ. Pollen-mediated gene flow in California cotton depends on pollinator activity. Crop Sci. 2005;45:1565–70.

    Google Scholar 

  167. SSCA. Southern Seed Certification Association, Inc. [Internet] Auburn. General seed certification standards. [Cited 23 Feb 2013]. Available from: http://www.ag.auburn.edu/auxiliary/ssca/general_standards06.pdf

  168. Bowman DT. Public cotton breeders-do we need them? J Cotton Sci. 1999;3:159–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Constable .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Constable, G., Llewellyn, D., Walford, S.A., Clement, J.D. (2015). Cotton Breeding for Fiber Quality Improvement. In: Cruz, V.M.V., Dierig, D.A. (eds) Industrial Crops. Handbook of Plant Breeding, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1447-0_10

Download citation

Publish with us

Policies and ethics