Skip to main content

Neurosteroids and Extrasynaptic GABAA Receptors

  • Chapter
  • First Online:
Extrasynaptic GABAA Receptors

Part of the book series: The Receptors ((REC,volume 27))

  • 957 Accesses

Abstract

Steroid sex hormones are generally thought to act through intracellular receptors, where they regulate gene expression and protein synthesis, an effect that takes minutes to hours to occur. However, steroid metabolites can also directly modulate the activity of numerous ligand-gated ion channels. These metabolites can be synthesised de novo in the CNS, and are termed neurosteroids. The action of neurosteroids at ion channels, most notably GABAA receptors, is implicated in natural and pathophysiological stress responses and neurophysiological changes during the oestrous cycle and parturition. Here, I will review the synthesis, action and the activity of neurosteroids on synaptic and extrasynaptic GABAA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins CE, Pillai GV, Kerby J, Bonnert TP, Haldon C, McKernan RM, Gonzalez JE, Oades K, Whiting PJ, Simpson PB (2001) α4β3δ GABA(A) receptors characterized by fluorescence resonance energy transfer-derived measurements of membrane potential. J Biol Chem 276:38934–38939

    Article  PubMed  CAS  Google Scholar 

  • Akk G, Bracamontes J, Steinbach JH (2001) Pregnenolone sulfate block of GABA(A) receptors: mechanism and involvement of a residue in the M2 region of the alpha subunit. J Physiol 532:673–684

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Belelli D, Bolger MB, Gee KW (1989) Anticonvulsant profile of the progesterone metabolite 5 alpha-pregnan-3 alpha-ol-20-one. Eur J Pharmacol 166:325–329

    Article  PubMed  CAS  Google Scholar 

  • Belelli D, Casula A, Ling A, Lambert JJ (2002) The influence of subunit composition on the interaction of neurosteroids with GABA(A) receptors. Neuropharmacology 43:651–661

    Article  PubMed  CAS  Google Scholar 

  • Belelli D, Herd MB (2003) The contraceptive agent Provera enhances GABAA receptor-mediated inhibitory neurotransmission in the rat hippocampus: evidence for endogenous neurosteroids? J Neurosci 23:10013–10020

    PubMed  CAS  Google Scholar 

  • Bitran D, Dugan M, Renda P, Ellis R, Foley M (1999) Anxiolytic effects of the neuroactive steroid pregnanolone (3alpha-OH-5beta-pregnan-20-one) after microinjection in the dorsal hippocampus and lateral septum. Brain Res 850:217–224

    Article  PubMed  CAS  Google Scholar 

  • Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA (2002) Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. Br J Pharmacol 136(7):965–967

    Article  PubMed  CAS  Google Scholar 

  • Callachan H, Cottrell GA, Hather NY, Lambert JJ, Nooney JM, Peters JA (1987) Modulation of the GABAA receptor by progesterone metabolites. Proc R Soc Lond B Biol Sci 231:359–369

    Article  PubMed  CAS  Google Scholar 

  • Compagnone NA, Mellon SH (2000) Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 21:1–56

    Article  PubMed  CAS  Google Scholar 

  • Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, Purdy RH, Grisenti P, Biggio G (1998) Role of brain allopregnanolone in the plasticity of gamma-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc Natl Acad Sci U S A 95:13284–13289

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cooper EJ, Johnston GA, Edwards FA (1999) Effects of a naturally occurring neurosteroid on GABAA IPSCs during development in rat hippocampal or cerebellar slices. J Physiol 521:437–449

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Corpéchot C, Robel P, Axelson M, Sjövall J, Baulieu EE (1981) Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci U S A 78:4704–4707

    Article  PubMed  PubMed Central  Google Scholar 

  • Corpéchot C, Synguelakis M, Talha S, Axelson M, Sjövall J, Vihko R, Baulieu EE, Robel P (1983) Pregnenolone and its sulfate ester in the rat brain. Brain Res 270:119–125

    Article  PubMed  Google Scholar 

  • Cottrell GA, Lambert JJ, Peters JA (1987) Modulation of GABAA receptor activity by alphaxalone. Br J Pharmacol 90:491–500

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Demirgören S, Majewska MD, Spivak CE, London ED (1991) Receptor binding and electrophysiological effects of dehydroepiandrosterone sulfate, an antagonist of the GABAA receptor. Neuroscience 45:127–135

    Article  PubMed  Google Scholar 

  • Fadalti M, Petraglia F, Luisi S, Bernardi F, Casarosa E, Ferrari E, Luisi M, Saggese G, Genazzani AR, Bernasconi S (1999) Changes of serum allopregnanolone levels in the first 2 years of life and during pubertal development. Pediatr Res 46:323–327

    Article  PubMed  CAS  Google Scholar 

  • Freeman EW, Purdy RH, Coutifaris C, Rickels K, Paul SM (1993) Anxiolytic metabolites of progesterone: correlation with mood and performance measures following oral progesterone administration to healthy female volunteers. Neuroendocrinology 58:478–484

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Bayon LE (1998) Seizure activity is increased in endocrine states characterized by decline in endogenous levels of the neurosteroid 3α,5α-THP. Neuroendocrinology 68:272–280

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Scalise TJ, Bayon LE (1998) Finasteride blocks the reduction in ictal activity produced by exogenous estrous cyclicity. J Neuroendocrinol 10:291–6

    Article  PubMed  CAS  Google Scholar 

  • Gee KW, Bolger MB, Brinton RE, Coirini H, McEwen BS (1988) Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action. J Pharmacol Exp Ther 246:803–812

    PubMed  CAS  Google Scholar 

  • Gyermek L, Soyka LF (1975) Steroid anesthetics. Anesthesiology 42:331–344

    Article  PubMed  CAS  Google Scholar 

  • Harrison NL, Simmonds MA (1984) Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 323:287–292

    Article  PubMed  CAS  Google Scholar 

  • Hayward C, Sanborn K (2002) Puberty and the emergence of gender differences in psychopathology. J Adolesc Health 30S:49–58

    Article  Google Scholar 

  • Heydari B, Le Mellédo JM (2002) Low pregnenolone sulphate plasma concentrations in patients with generalized social phobia. Psychol Med 32:929–933

    Article  PubMed  Google Scholar 

  • Jung-Testas I, Hu ZY, Baulieu EE, Robel P (1989) Neurosteroids: biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells. Endocrinology 125:2083–2091

    Article  PubMed  CAS  Google Scholar 

  • Korpi ER, Lüddens H (1993) Regional gamma-aminobutyric acid sensitivity of t-butylbicyclophosphoro[35S]thionate binding depends on gamma-aminobutyric acidA receptor alpha subunit. Mol Pharmacol 44:87–92

    PubMed  CAS  Google Scholar 

  • Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA (2003) Neurosteroid modulation of GABAA receptors. Prog Neurobiol 71:67–80

    Article  PubMed  CAS  Google Scholar 

  • Lan NC, Gee KW, Bolger MB, Chen JS (1991) Differential responses of expressed recombinant human gamma-aminobutyric acidA receptors to neurosteroids. J Neurochem 57:1818–1821

    Article  PubMed  CAS  Google Scholar 

  • Le Goascogne C, Robel P, Gouézou M, Sananès N, Baulieu EE, Waterman M (1987) Neurosteroids: cytochrome P-450scc in rat brain. Science 237:1212–1215

    Article  PubMed  CAS  Google Scholar 

  • Luisi S, Petraglia F, Benedetto C, Nappi RE, Bernardi F, Fadalti M, Reis FM, Luisi M, Genazzani AR (2000) Serum allopregnanolone levels in pregnant women: changes during pregnancy, at delivery, and in hypertensive patients. J Clin Endocrinol Metab 85(7):2429–2433

    Article  PubMed  CAS  Google Scholar 

  • Lundgren P, Strömberg J, Bäckström T, Wang M (2003) Allopregnanolone-stimulated GABA-mediated chloride ion flux is inhibited by 3beta-hydroxy-5alpha-pregnan-20-one (isoallopregnanolone). Brain Res 982:45–53

    Article  PubMed  CAS  Google Scholar 

  • Maguire J, Mody I (2008) GABA(A)R plasticity during pregnancy: relevance to postpartum depression. Neuron 59:207–213

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8:797–804

    Article  PubMed  CAS  Google Scholar 

  • Maguire J, Ferando I, Simonsen C, Mody I (2009) Excitability changes related to GABAA receptor plasticity during pregnancy. J Neurosci 2009

    Article  PubMed  CAS  Google Scholar 

  • Majewska MD, Mienville JM, Vicini S (1988) Neurosteroid pregnenolone sulfate antagonizes electrophysiological responses to GABA in neurons. Neurosci Lett 90:279–284

    Article  PubMed  CAS  Google Scholar 

  • Mellon SH, Griffin LD, Compagnone NA (2001) Biosynthesis and action of neurosteroids. Brain Res Brain Res Rev 37:3–12

    Article  PubMed  CAS  Google Scholar 

  • Modesti PA, Pela I, Cecioni I, Gensini GF, Serneri GG, Bartolozzi G (1994) Changes in blood pressure reactivity and 24-hour blood pressure profile occurring at puberty. Angiology 45:443–450

    Article  PubMed  CAS  Google Scholar 

  • Nau H, Kuhnz W, Löscher W (1985) Effects of pregnancy on seizure threshold and the disposition and efficacy of antiepileptic drugs in the mouse. Life Sci 36:663–669

    Article  PubMed  CAS  Google Scholar 

  • Pericić D, Svob D, Jazvinsćak M, Mirković K (2000) Anticonvulsive effect of swim stress in mice. Pharmacol Biochem Behav 66:879–886

    Article  PubMed  Google Scholar 

  • Phillipps GH (1974) Structure-activity relationships in steroidal anaesthetics. In: Halsey MJ, Millar RA, Sutton JA (eds) Molecular mechanisms in general anaesthesia. Churchill Livingstone, Edinburgh, pp 32–46

    Google Scholar 

  • Pritchett DB1, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338(6216):582–585

    Google Scholar 

  • Puia G, Santi MR, Vicini S, Pritchett DB, Purdy RH, Paul SM, Seeburg PH, Costa E (1990) Neurosteroids act on recombinant human GABAA receptors. Neuron 4:759–765

    Article  PubMed  CAS  Google Scholar 

  • Puia G, Ducić I, Vicini S, Costa E (1993) Does neurosteroid modulatory efficacy depend on GABAA receptor subunit composition? Recept Channels 1:135–142

    PubMed  CAS  Google Scholar 

  • Purdy RH, Morrow AL, Moore PH Jr, Paul SM (1991) Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A 88:4553–4557

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reddy DS, Rogawski MA (2002) Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA(A) receptor function and seizure susceptibility. J Neurosci 22:3795–3805

    PubMed  CAS  Google Scholar 

  • Sanna E, Mostallino MC, Murru L, Carta M, Talani G, Zucca S, Mura ML, Maciocco E, Biggio G (2009) Changes in expression and function of extrasynaptic GABAA receptors in the rat hippocampus during pregnancy and after delivery. J Neurosci 29:1755–1765

    Article  PubMed  CAS  Google Scholar 

  • Sarkar J, Wakefield S, MacKenzie G, Moss SJ, Maguire J (2011) Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J Neurosci 31:18198–18210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Scholfield CN (1980) Potentiation of inhibition by general anaesthetics in neurones of the olfactory cortex in vitro. Pflugers Arch 383:249–255

    Article  PubMed  CAS  Google Scholar 

  • Selye H (1941) Anaesthetic effects of steroid hormones. Proc Soc Exp Biol Med 46:116–121

    Article  CAS  Google Scholar 

  • Selye H (1942) The antagonism between anesthetic steroid hormones and pentamethylenetetrazol (metrazol). J Lab Clin Med 27:1051–1053

    CAS  Google Scholar 

  • Semeniuk T, Jhangri GS, Le Mellédo JM (2001) Neuroactive steroid levels in patients with generalized anxiety disorder. J Neuropsychiatry Clin Neurosci 13:396–398

    Article  PubMed  CAS  Google Scholar 

  • Sigel E, Baur R, Trube G, Möhler H, Malherbe P (1990) The effect of subunit composition of rat brain GABAA receptors on channel function. Neuron 5:703–711

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Gong QH, Aoki C, Yuan M, Ruderman Y, Dattilo M, Williams K, Smith SS (2007) Reversal of neurosteroid effects at α4β2δ GABAA receptors triggers anxiety at puberty Nat Neurosci 10:469–477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shingai R, Sutherland ML, Barnard EA (1991) Effects of subunit types of the cloned GABAA receptor on the response to a neurosteroid. Eur J Pharmacol 206:77–80

    Article  PubMed  CAS  Google Scholar 

  • Smith GB1, Olsen RW (1995) Functional domains of GABAA receptors. Trends Pharmacol Sci 16(5):162–168

    Google Scholar 

  • Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A 100:14439–14444

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Twyman RE, Macdonald RL (1992) Neurosteroid regulation of GABAA receptor single-channel kinetic properties of mouse spinal cord neurons in culture. J Physiol 456:215–245

    PubMed  CAS  PubMed Central  Google Scholar 

  • Walf AA, Sumida K, Frye CA (2006) Inhibiting 5alpha-reductase in the amygdala attenuates antianxiety and antidepressive behavior of naturally receptive and hormone-primed ovariectomized rats. Psychopharmacology 186:302–311

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang M, He Y, Eisenman LN, Fields C, Zeng CM, Mathews J, Benz A, Fu T, Zorumski E, Steinbach JH, Covey DF, Zorumski CF, Mennerick S (2002) 3beta -hydroxypregnane steroids are pregnenolone sulfate-like GABA(A) receptor antagonists. J Neurosci 22:3366–3375

    PubMed  CAS  Google Scholar 

  • Wohlfarth KM, Bianchi MT, Macdonald RL (2002) Enhanced neurosteroid potentiation of ternary GABA(A) receptors containing the delta subunit. J Neurosci 22:1541–1549

    PubMed  CAS  Google Scholar 

  • Zhu WJ, Wang JF, Krueger KE, Vicini S (1996) Delta subunit inhibits neurosteroid modulation of GABAA receptors. J Neurosci 16:6648–6656

    PubMed  CAS  Google Scholar 

  • Zwain IH, Yen SS (1999) Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology 140:3843–3852

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Connelly .

Editor information

Editors and Affiliations

Conclusion

Conclusion

In the 50 years since Selye’s report of the anaesthetic action of neurosteroids, much has been revealed about their action and physiological relevance. However, many important areas remain to be properly covered. Apart from the regulation of CRH release, what roles do neurosteroids play in the physiological response to stress? Is the action of neurosteroids enhanced or decreased in pregnancy? How is neurosteroid synthesis regulated in the CNS? It is still not completely clear which GABAA receptor subtypes neurosteroids target. There appears to be a dearth of molecular tools to investigate these questions (for instance, a CNS-specific knockout of 5α-reductase) and hopefully the development of tools like this will help elucidate the role of neurosteroids in the healthy and diseased brain.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Connelly, W. (2014). Neurosteroids and Extrasynaptic GABAA Receptors. In: Errington, A., Di Giovanni, G., Crunelli, V. (eds) Extrasynaptic GABAA Receptors. The Receptors, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1426-5_5

Download citation

Publish with us

Policies and ethics