Skip to main content

Ecology of a Simple Synthetic Biofilm

  • Chapter
  • First Online:
The Physical Basis of Bacterial Quorum Communication

Abstract

The ecology in a biofilm—i.e., how the cells relate to each other and their environment—can offer competitive advantages over an autonomous, free-swimming, planktonic environment such as nutrient acquisition via cross-feeding of populations and increased resistance to biocides. To explore this ecology, we investigated the physical parameters governing prokaryotic cell-to-cell signaling in a simple model of a biofilm created using live-cell lithography, comprising bacteria that are genetically engineered to transmit and receive quorum-sensing signals. These experiments, along with the numerical simulations that mirror them, revealed that gene expression resulting from transmitter to receiver communications was vitally dependent on the location within the biofilm elements and the epigenetic memory associated with a bistable switch in the receiver gene, which were both easily accessible in the model. Three-dimensional biofilm models with open channels that include still more complex communication networks for the study of wound repair are in the offing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall-Stoodley L, Costerton J, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95

    Article  Google Scholar 

  2. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623

    Google Scholar 

  3. Costerton JW, Lappin-Scott HM (1989) Behavior of bacteria in biofilms. Am Soc Microbiol News 55:650

    Google Scholar 

  4. Chauret C, Volk C, Creason R, Jarosh L, Robinson J, Warnes C (2001) Detection of Aeromonas hydrophila in a drinking-water distribution system: a field and pilot study. Can J Microbiol 47:782

    Article  Google Scholar 

  5. Stickler DJ (2008) Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pract Urol 5:598

    Article  Google Scholar 

  6. Ramage G, Martinez JP, Lopez-Ribot JL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6:979

    Article  Google Scholar 

  7. Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999

    Article  Google Scholar 

  8. Kharazmi A, Giwercman B, Høiby N (1999) Robbins device in biofilm research. Methods Enzymol 310:207

    Article  Google Scholar 

  9. Stoodley P, Dodds I, De Beer D, Scott H, Boyle J (2005) Flowing biofilms as a transport mechanism for biomass through porous media under laminar and turbulent conditions in a laboratory reactor system. Biofouling 21:161

    Article  Google Scholar 

  10. Augspurger C, Karwautz C, Mussmann M, Daims H, Battin T (2010) Drivers of bacterial colonization patterns in stream biofilms. FEMS Microbiol Ecol 72:47

    Article  Google Scholar 

  11. Dufour D, Leung V, LĂ©vesque CM (2012) Bacterial biofilm: structure, function, and antimicrobial resistance. Endo Topics 22:2

    Article  Google Scholar 

  12. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439

    Article  Google Scholar 

  13. Hentzer M, Givskov M, Eberl L (2004) Microbial biofilms. In: Mahmoud G (ed) ASM, Washington, DC, p 118

    Google Scholar 

  14. Pappas KM, Weingart CL, Winans SC (2004) Chemical communication in proteobacteria: biochemical and structural studies of signal synthases and receptors required for intercellular signalling. Mol Microbiol 53:755

    Article  Google Scholar 

  15. Shirtliff ME, Mader JT, Camper AK (2002) Molecular interactions in biofilms. Chem Biol 9:859

    Article  Google Scholar 

  16. De Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839

    Article  Google Scholar 

  17. Timp W, Mirsaidov U, Matsudaira P, Timp G (2009) Jamming prokaryotic cell-to-cell communications in a model biofilm. Lab Chip 9:925

    Article  Google Scholar 

  18. Redfield R (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365

    Article  Google Scholar 

  19. Hense BA, Kuttler C, MĂĽller J, Rothballer M, Hartmann A, Kreft J-U (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230

    Article  Google Scholar 

  20. Horswill AR, Stoodley P, Stewart PS, Parsek MR (2007) The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 387:371

    Article  Google Scholar 

  21. Nelson EM, Kurz V, Perry N, Kyrouac D, Timp G (2014) Biological noise abatement: coordinating the responses of autonomous bacteria in a synthetic biofilm to a fluctuating environment using a stochastic bistable switch. ACS Synth Biol 3:286

    Article  Google Scholar 

  22. Pedraza JM, van Oudenaarden A (2005) Noise propagation in gene networks. Science 307:1965

    Article  ADS  Google Scholar 

  23. Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309:2010

    Article  ADS  Google Scholar 

  24. Samoilov MS, Price G, Arkin AP (2006) From fluctuations to phenotypes: the physiology of noise. Sci STKE 2006:re17

    Article  Google Scholar 

  25. Thattai M, van Oudenaarden A (2004) Stochastic gene expression in fluctuating environments. Genetics 167:523

    Article  Google Scholar 

  26. Mirsaidov U, Scrimgeour J, Timp W, Beck K, Mir M, Matsudaira P, Timp G (2008) Live cell lithography: using optical tweezers to create synthetic tissue. Lab Chip 8:2174

    Article  Google Scholar 

  27. Kurz V, Nelson E, Perry N, Timp W, Timp G (2013) Epigenetic memory emerging from integrated transcription bursts. Biophys J 105:1526

    Article  Google Scholar 

  28. Akselrod G, Timp W, Mirsaidov U, Zhao Q, Li C, Timp R, Timp K, Matsudaira P, Timp G (2006) Laser-guided assembly of heterotypic three-dimensional living cell microarrays. Biophys J 91:3465

    Article  Google Scholar 

  29. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165

    Article  Google Scholar 

  30. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237

    Article  Google Scholar 

  31. Goryachev AB, Toh DJ, Lee T (2006) Systems analysis of a quorum sensing network: design constraints imposed by the functional requirements, network topology and kinetic constants. Biosystems 83:178

    Article  Google Scholar 

  32. Stamatakis M, Mantzaris NV (2009) Comparison of deterministic and stochastic models of the lac operon genetic network. Biophys J 96:887

    Article  Google Scholar 

  33. Blake WJ, Balázsi G, Kohanski MA, Isaacs FJ, Murphy KF, Kuang Y, Cantor CR, Walt DR, Collins JJ (2006) Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell 24:853–865

    Article  Google Scholar 

  34. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31:69–73

    Article  Google Scholar 

  35. McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A 94:814–819

    Article  ADS  Google Scholar 

  36. Danino T, MondragĂłn-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463:326

    Article  ADS  Google Scholar 

  37. Rao CV, Wolf DM, Arkin AP (2002) Control, exploitation and tolerance of intracellular noise. Nature 420:231–237

    Article  ADS  Google Scholar 

  38. Hui EE, Bhatia SN (2007) Micromechanical control of cell–cell interactions. Proc Natl Acad Sci U S A 104:5722

    Article  ADS  Google Scholar 

  39. Chen C, Mrksich M, Huang S, Whitesides G, Ingber D (1997) Geometric control of cell life and death. Science 276:1425

    Article  Google Scholar 

  40. Ozkan M, Pisanic T, Scheel J, Barlow C, Esener S, Bhatia SN (2003) Electrooptical platform for the manipulation of live cells. Langmuir 19:1532

    Article  Google Scholar 

  41. Albrecht DR, Underhill GH, Wassermann TB, Sah RL, Bhatia SN (2006) Probing the role of multicellular organization in three-dimensional microenvironments. Nat Methods 3:369

    Article  Google Scholar 

  42. Golden AP, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720

    Article  Google Scholar 

  43. Ling Y, Rubin J, Deng Y, Huang C, Demirici U, Karp JM, Khademhosseini A (2007) A cell-laden microfluidic hydrogel. Lab Chip 7:756

    Article  Google Scholar 

  44. Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V (2010) Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 10:409

    Article  Google Scholar 

  45. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001

    Article  ADS  Google Scholar 

  46. Rezende RA, de Souza Azevedo F, Pereira FD, Kasyanov V, Wen X, de Silva JVL, Mironov V (2012) Nanotechnological strategies for biofabrication of human organs. J Nanotechnol 2012:149264

    Article  Google Scholar 

  47. Miller JS, Steven KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, Chaturvedi R, Bhatia SN, Chen CS (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11:768

    Article  ADS  Google Scholar 

  48. Nahmias Y, Schwartz RE, Verfaillie CM, Odde D (2005) Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng 92:129

    Article  Google Scholar 

  49. Cruise GM, Scharp DS, Hubbell JA (1998) Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19:1287

    Article  Google Scholar 

  50. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307

    Article  Google Scholar 

  51. Kim BC, Gu MB (2003) A bioluminescent sensor for high throughput toxicity classification. Biosens Bioelectron 18:1015

    Article  Google Scholar 

  52. Andersen JB, Sternberg C, Poulsen L, Bjorn S, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240

    Google Scholar 

  53. Williams W, Cui W, Levchenko A, Stevens AM (2008) Robust and sensitive control of a quorum-sensing circuit by two interlocked feedback loops. Mol Syst Biol 4:234

    Article  Google Scholar 

  54. Wu Y, Joseph S, Aluru NR (2009) Effect of cross-linking on the diffusion of water, ions, and small molecules in hydrogels. J Phys Chem B 113:3512

    Article  Google Scholar 

  55. Adam M, Murali B, Glenn NO, Potter SS (2008) Epigenetic inheritance based evolution of antibiotic resistance in bacteria. BMC Evol Biol 8:52

    Article  Google Scholar 

  56. Bierne H, Hamon M, Cossart P (2012) Epigenetics and bacterial infections. Cold Spring Harb Perspect Med 2:a010272

    Article  Google Scholar 

  57. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711

    Article  Google Scholar 

  58. Duran-Pinedo AE, Paster B, Teles R, Frias-Lopez J (2011) Correlation network analysis applied to complex biofilm communities. PLoS One 6:e28438

    Article  ADS  Google Scholar 

  59. Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54:413

    Article  Google Scholar 

  60. Margulies M, Eqholm M, Altman WE, Attaya S et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376

    ADS  Google Scholar 

  61. Hong P-Y, Hwang C, Ling F, Anderson GL, LeChevallier MW, Liu W-T (2010) Pyrosequencing analysis of bacterial biofilm communities in water meters of a drinking water distribution system. Appl Environ Microbiol 76:5631

    Article  Google Scholar 

  62. Percival SL, Malic S, Cruz H, Williams DW (2011) Biofilms and veterinary medicine, vol 6, Springer series on biofilms. Springer, Berlin, pp 41–48

    Google Scholar 

  63. Baum MM, Kainović A, O’Keeffe T, Pandita R, McDonald K, Wu S, Webster P (2009) Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil. BMC Microbiol 9:103

    Article  Google Scholar 

  64. Thar R, KĂĽhil M (2002) Conspicuous veils formed by vibrioid bacteria on sulfidic marine sediment. Appl Environ Microbiol 68:6310

    Article  Google Scholar 

  65. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295

    Article  ADS  Google Scholar 

  66. Wimpenny JWT, Colasanti R (1997) A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22:1

    Article  Google Scholar 

  67. Perry N, Nelson EM, Sarveswaran K, Kurz V, Timp G (2013) Wiring a biological integrated circuit (unpublished manuscript)

    Google Scholar 

  68. Seliktar D (2005) Extracellular stimulation in tissue engineering. Ann N Y Acad Sci 1047:386

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from NSF CCF-1129098. We are also grateful to R. Weiss for the donation of receiver plasmids and W-T Liu for sharing his preliminary sequencing data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Timp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nelson, E.M. et al. (2015). Ecology of a Simple Synthetic Biofilm. In: Hagen, S. (eds) The Physical Basis of Bacterial Quorum Communication. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1402-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1402-9_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1401-2

  • Online ISBN: 978-1-4939-1402-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics