Skip to main content

Functional Distribution and Regulation of Neuronal Nicotinic ACh Receptors in the Mammalian Brain

  • Chapter
  • First Online:
Nicotinic Receptors

Part of the book series: The Receptors ((REC,volume 26))

Abstract

The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability throughout the nervous system by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor channels (nAChRs). These receptors are widely distributed throughout the nervous system, being expressed on neurons and nonneuronal cells where they participate in a variety of physiological responses. In the mammalian brain, nine different subunits have been discovered thus far, which assemble into pentameric complexes with much diversity. The neuronal subtypes of these receptors, primarily composed of the α7 and non-α7 subtypes (e.g. α4β2 and α3β4), are involved in a variety of neurobehavioral processes such as anxiety, the central processing of pain, food intake, nicotine-seeking behavior, and cognitive functions. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders and diseases including (but not limited to) Alzheimer’s and Parkinson’s diseases, schizophrenia, and epilepsy. Here I will briefly discuss the functional makeup and expression of nAChRs in the mammalian brain, and the role that they play in these various circuits, in normal function, and in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yakel JL. Gating of nicotinic ACh receptors: latest insights into ligand binding and function. J Physiol. 2010;588(Pt 4):597–602.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Gay EA, Yakel JL. Gating of nicotinic ACh receptors; new insights into structural transitions triggered by agonist binding that induce channel opening. J Physiol. 2007;584(Pt 3):727–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Yakel JL. Cholinergic receptors: functional role of nicotinic ACh receptors in brain circuits and disease. Pflugers Arch. 2013;465(4):441–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacol Ther. 2012;137:22–54.

    PubMed  Google Scholar 

  5. Alkondon M, Albuquerque EX. Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther. 1993;265(3):1455–73.

    CAS  PubMed  Google Scholar 

  6. Alkondon M, Albuquerque EX. The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res. 2004;145:109–20.

    CAS  PubMed  Google Scholar 

  7. Sargent PB. The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci. 1993;16:403–43.

    CAS  PubMed  Google Scholar 

  8. Wada E, et al. Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol. 1989;284(2):314–35.

    CAS  PubMed  Google Scholar 

  9. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699–729.

    CAS  PubMed  Google Scholar 

  10. Albuquerque EX, et al. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89(1):73–120.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Colombo SF, et al. Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol. 2013;86:1063–73.

    CAS  PubMed  Google Scholar 

  12. Jones S, Sudweeks S, Yakel JL. Nicotinic receptors in the brain: correlating physiology with function. Trends Neurosci. 1999;22(12):555–61.

    CAS  PubMed  Google Scholar 

  13. Jones S, Yakel JL. Functional nicotinic ACh receptors on interneurones in the rat hippocampus. J Physiol. 1997;504(Pt 3):603–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Khiroug SS, et al. Rat nicotinic ACh receptor alpha7 and beta2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. J Physiol. 2002;540(Pt 2):425–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Sudweeks SN, Yakel JL. Functional and molecular characterization of neuronal nicotinic ACh receptors in rat CA1 hippocampal neurons. J Physiol. 2000;527(Pt 3):515–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Quick MW, et al. Alpha3beta4 subunit-containing nicotinic receptors dominate function in rat medial habenula neurons. Neuropharmacology. 1999;38(6):769–83.

    CAS  PubMed  Google Scholar 

  17. Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci. 1997;20(2):92–8.

    CAS  PubMed  Google Scholar 

  18. Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci. 2006;27(9):482–91.

    CAS  PubMed  Google Scholar 

  19. Gu Z, Yakel JL. Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron. 2011;71(1):155–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Alkondon M, Pereira EF, Albuquerque EX. Alpha-bungarotoxin- and methyllycaconitine-sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices. Brain Res. 1998;810(1–2):257–63.

    CAS  PubMed  Google Scholar 

  21. Frazier CJ, et al. Synaptic potentials mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J Neurosci. 1998;18(20):8228–35.

    CAS  PubMed  Google Scholar 

  22. Bell KA, et al. Nicotinic excitatory postsynaptic potentials in hippocampal CA1 interneurons are predominantly mediated by nicotinic receptors that contain alpha4 and beta2 subunits. Neuropharmacology. 2011;61(8):1379–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Roerig B, Nelson DA, Katz LC. Fast synaptic signaling by nicotinic acetylcholine and serotonin 5-HT3 receptors in developing visual cortex. J Neurosci. 1997;17(21):8353–62.

    CAS  PubMed  Google Scholar 

  24. Sun YG, et al. Biphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons. J Neurosci. 2013;33(5):2048–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Hatton GI, Yang QZ. Synaptic potentials mediated by alpha 7 nicotinic acetylcholine receptors in supraoptic nucleus. J Neurosci. 2002;22(1):29–37.

    CAS  PubMed  Google Scholar 

  26. Bennett C, et al. Mechanisms generating dual-component nicotinic EPSCs in cortical interneurons. J Neurosci. 2012;32(48):17287–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol. 2008;154(8):1558–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Fucile S. Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium. 2004;35(1):1–8.

    CAS  PubMed  Google Scholar 

  29. Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. 2013;137(1):22–54.

    CAS  PubMed  Google Scholar 

  30. Nelson ME, et al. Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. Mol Pharmacol. 2003;63(2):332–41.

    CAS  PubMed  Google Scholar 

  31. Moroni M, et al. alpha4beta2 nicotinic receptors with high and low acetylcholine sensitivity: pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine. Mol Pharmacol. 2006;70(2):755–68.

    CAS  PubMed  Google Scholar 

  32. Tapia L, Kuryatov A, Lindstrom J. Ca2+ permeability of the (alpha4)3(beta2)2 stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors. Mol Pharmacol. 2007;71(3):769–76.

    CAS  PubMed  Google Scholar 

  33. Krashia P, et al. Human alpha3beta4 neuronal nicotinic receptors show different stoichiometry if they are expressed in Xenopus oocytes or mammalian HEK293 cells. PLoS One. 2010;5(10):e13611.

    PubMed Central  PubMed  Google Scholar 

  34. Grishin AA, et al. Alpha-conotoxin AuIB isomers exhibit distinct inhibitory mechanisms and differential sensitivity to stoichiometry of alpha3beta4 nicotinic acetylcholine receptors. J Biol Chem. 2010;285(29):22254–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Wada K, et al. Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science. 1988;240(4850):330–4.

    CAS  PubMed  Google Scholar 

  36. Lotfipour S, et al. Targeted deletion of the mouse alpha2 nicotinic acetylcholine receptor subunit gene (Chrna2) potentiates nicotine-modulated behaviors. J Neurosci. 2013;33(18):7728–41.

    CAS  PubMed  Google Scholar 

  37. McQuiston AR, Madison DV. Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. J Neurosci. 1999;19(8):2887–96.

    CAS  PubMed  Google Scholar 

  38. Nakauchi S, et al. Nicotine gates long-term potentiation in the hippocampal CA1 region via the activation of alpha2* nicotinic ACh receptors. Eur J Neurosci. 2007;25(9):2666–81.

    PubMed  Google Scholar 

  39. Mulle C, et al. Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo-interpeduncular system. J Neurosci. 1991;11(8):2588–97.

    CAS  PubMed  Google Scholar 

  40. Jia Y, et al. Nicotine facilitates long-term potentiation induction in oriens-lacunosum moleculare cells via Ca2+ entry through non-alpha7 nicotinic acetylcholine receptors. Eur J Neurosci. 2010;31(3):463–76.

    PubMed Central  PubMed  Google Scholar 

  41. Jia Y, et al. Alpha2 nicotine receptors function as a molecular switch to continuously excite a subset of interneurons in rat hippocampal circuits. Eur J Neurosci. 2009;29(8):1588–603.

    PubMed Central  PubMed  Google Scholar 

  42. Fonck C, et al. Demonstration of functional alpha4-containing nicotinic receptors in the medial habenula. Neuropharmacology. 2009;56(1):247–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Millar NS, Harkness PC. Assembly and trafficking of nicotinic acetylcholine receptors (review). Mol Membr Biol. 2008;25(4):279–92.

    CAS  PubMed  Google Scholar 

  44. Ramirez-Latorre J, et al. Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature. 1996;380(6572):347–51.

    CAS  PubMed  Google Scholar 

  45. Groot-Kormelink PJ, et al. A reporter mutation approach shows incorporation of the “orphan” subunit beta3 into a functional nicotinic receptor. J Biol Chem. 1998;273(25):15317–20.

    CAS  PubMed  Google Scholar 

  46. Gotti C, et al. Heterogeneity and complexity of native brain nicotinic receptors. Biochem Pharmacol. 2007;74(8):1102–11.

    CAS  PubMed  Google Scholar 

  47. Shao Z, Yakel JL. Single channel properties of neuronal nicotinic ACh receptors in stratum radiatum interneurons of rat hippocampal slices. J Physiol. 2000;527(Pt 3):507–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Gerzanich V, et al. alpha 5 Subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal alpha 3 nicotinic receptors. J Pharmacol Exp Ther. 1998;286(1):311–20.

    CAS  PubMed  Google Scholar 

  49. Groot-Kormelink PJ, Boorman JP, Sivilotti LG. Formation of functional alpha3beta4alpha5 human neuronal nicotinic receptors in Xenopus oocytes: a reporter mutation approach. Br J Pharmacol. 2001;134(4):789–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Dani JA, De Biasi M. Mesolimbic dopamine and habenulo-interpeduncular pathways in nicotine withdrawal. In: Kenny PJ, Christopher Pierce R, editors. Addiction, Cold spring harbor perspectives in medicine. New York: Cold Spring Harbor Laboratory Press; 2013. p. 237–50. doi:10.1101/cshperspect.a012138.

    Google Scholar 

  51. Broadbent S, et al. Incorporation of the beta3 subunit has a dominant-negative effect on the function of recombinant central-type neuronal nicotinic receptors. Mol Pharmacol. 2006;70(4):1350–7.

    CAS  PubMed  Google Scholar 

  52. Exley R, et al. Alpha6-containing nicotinic acetylcholine receptors dominate the nicotine control of dopamine neurotransmission in nucleus accumbens. Neuropsychopharmacology. 2008;33(9):2158–66.

    CAS  PubMed  Google Scholar 

  53. Gerzanich V, et al. “Orphan” alpha6 nicotinic AChR subunit can form a functional heteromeric acetylcholine receptor. Mol Pharmacol. 1997;51(2):320–7.

    CAS  PubMed  Google Scholar 

  54. Changeux JP. Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat Rev Neurosci. 2010;11(6):389–401.

    CAS  PubMed  Google Scholar 

  55. Klink R, et al. Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci. 2001;21(5):1452–63.

    CAS  PubMed  Google Scholar 

  56. Champtiaux N, et al. Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci. 2003;23(21):7820–9.

    CAS  PubMed  Google Scholar 

  57. Grady SR, et al. The subtypes of nicotinic acetylcholine receptors on dopaminergic terminals of mouse striatum. Biochem Pharmacol. 2007;74(8):1235–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Drenan RM, et al. In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha 6 nicotinic acetylcholine receptors. Neuron. 2008;60(1):123–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Anand R, Peng X, Lindstrom J. Homomeric and native alpha 7 acetylcholine receptors exhibit remarkably similar but non-identical pharmacological properties, suggesting that the native receptor is a heteromeric protein complex. FEBS Lett. 1993;327(2):241–6.

    CAS  PubMed  Google Scholar 

  60. Yu CR, Role LW. Functional contribution of the alpha7 subunit to multiple subtypes of nicotinic receptors in embryonic chick sympathetic neurones. J Physiol. 1998;509(Pt 3):651–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Girod R, et al. Heteromeric complexes of alpha 5 and/or alpha 7 subunits. Effects of calcium and potential role in nicotine-induced presynaptic facilitation. Ann N Y Acad Sci. 1999;868:578–90.

    CAS  PubMed  Google Scholar 

  62. Palma E, et al. Nicotinic acetylcholine receptors assembled from the alpha7 and beta3 subunits. J Biol Chem. 1999;274(26):18335–40.

    CAS  PubMed  Google Scholar 

  63. Murray TA, et al. alpha7beta2 nicotinic acetylcholine receptors assemble, function, and are activated primarily via their alpha7-alpha7 interfaces. Mol Pharmacol. 2012;81(2):175–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Liu Q, et al. A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides. J Neurosci. 2009;29(4):918–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Shen JX, Yakel JL. Functional alpha7 nicotinic ACh receptors on astrocytes in rat hippocampal CA1 slices. J Mol Neurosci. 2012;48(1):14–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Sharma G, Vijayaraghavan S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A. 2001;98(7):4148–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Shytle RD, et al. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem. 2004;89(2):337–43.

    CAS  PubMed  Google Scholar 

  68. Velez-Fort M, Audinat E, Angulo MC. Functional alpha 7-containing nicotinic receptors of NG2-expressing cells in the hippocampus. Glia. 2009;57(10):1104–14.

    PubMed  Google Scholar 

  69. De Simone R, et al. Activation of alpha7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation. 2005;2(1):4.

    PubMed Central  PubMed  Google Scholar 

  70. Suzuki T, et al. Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res. 2006;83(8):1461–70.

    CAS  PubMed  Google Scholar 

  71. Hawkins BT, Egleton RD, Davis TP. Modulation of cerebral microvascular permeability by endothelial nicotinic acetylcholine receptors. Am J Physiol Heart Circ Physiol. 2005;289(1):H212–9.

    CAS  PubMed  Google Scholar 

  72. Hernandez CM, Dineley KT. Alpha7 nicotinic acetylcholine receptors in Alzheimer’s disease: neuroprotective, neurotrophic or both? Curr Drug Targets. 2012;13(5):613–22.

    CAS  PubMed  Google Scholar 

  73. Shen JX, Yakel JL. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol Sin. 2009;30(6):673–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Gahring LC, et al. Nicotinic receptor alpha7 expression identifies a novel hematopoietic progenitor lineage. PLoS One. 2013;8(3):e57481.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Olofsson PS, et al. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev. 2012;248(1):188–204.

    PubMed  Google Scholar 

  76. Dajas-Bailador FA, Mogg AJ, Wonnacott S. Intracellular Ca2+ signals evoked by stimulation of nicotinic acetylcholine receptors in SH-SY5Y cells: contribution of voltage-operated Ca2+ channels and Ca2+ stores. J Neurochem. 2002;81(3):606–14.

    CAS  PubMed  Google Scholar 

  77. Lendvai B, Vizi ES. Nonsynaptic chemical transmission through nicotinic acetylcholine receptors. Physiol Rev. 2008;88(2):333–49.

    CAS  PubMed  Google Scholar 

  78. Descarries L, Gisiger V, Steriade M. Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol. 1997;53(5):603–25.

    CAS  PubMed  Google Scholar 

  79. Kasa P, et al. Synaptic and non-synaptic cholinergic innervation of the various types of neurons in the main olfactory bulb of adult rat: immunocytochemistry of choline acetyltransferase. Neuroscience. 1995;67(3):667–77.

    CAS  PubMed  Google Scholar 

  80. Kiss JP, Vizi ES, Westerink BH. Effect of neostigmine on the hippocampal noradrenaline release: role of cholinergic receptors. Neuroreport. 1999;10(1):81–6.

    CAS  PubMed  Google Scholar 

  81. Umbriaco D, et al. Relational features of acetylcholine, noradrenaline, serotonin and GABA axon terminals in the stratum radiatum of adult rat hippocampus (CA1). Hippocampus. 1995;5(6):605–20.

    CAS  PubMed  Google Scholar 

  82. Gilbert D, et al. Local and global calcium signals associated with the opening of neuronal alpha7 nicotinic acetylcholine receptors. Cell Calcium. 2009;45(2):198–207.

    CAS  PubMed  Google Scholar 

  83. Dajas-Bailador F, Wonnacott S. Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci. 2004;25(6):317–24.

    CAS  PubMed  Google Scholar 

  84. Rathouz MM, Berg DK. Synaptic-type acetylcholine receptors raise intracellular calcium levels in neurons by two mechanisms. J Neurosci. 1994;14(11 Pt 2):6935–45.

    CAS  PubMed  Google Scholar 

  85. Tsuneki H, et al. Calcium mobilization elicited by two types of nicotinic acetylcholine receptors in mouse substantia nigra pars compacta. Eur J Neurosci. 2000;12(7):2475–85.

    CAS  PubMed  Google Scholar 

  86. Rizzoli S, Sharma G, Vijayaraghavan S. Calcium rise in cultured neurons from medial septum elicits calcium waves in surrounding glial cells. Brain Res. 2002;957(2):287–97.

    CAS  PubMed  Google Scholar 

  87. Gueorguiev VD, et al. Involvement of alpha7 nicotinic acetylcholine receptors in activation of tyrosine hydroxylase and dopamine beta-hydroxylase gene expression in PC12 cells. J Neurochem. 2000;75(5):1997–2005.

    CAS  PubMed  Google Scholar 

  88. McKay BE, Placzek AN, Dani JA. Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol. 2007;74(8):1120–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Szabo SI, Zelles T, Lendvai B. Intracellular Ca2+ dynamics of hippocampal interneurons following nicotinic acetylcholine receptor activation. Neurochem Int. 2008;52(1–2):135–41.

    CAS  PubMed  Google Scholar 

  90. Fayuk D, Yakel JL. Dendritic Ca2+ signalling due to activation of alpha 7-containing nicotinic acetylcholine receptors in rat hippocampal neurons. J Physiol. 2007;582(Pt 2):597–611.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Fayuk D, Yakel JL. Ca2+ permeability of nicotinic acetylcholine receptors in rat hippocampal CA1 interneurones. J Physiol. 2005;566(Pt 3):759–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260(6):3440–50.

    CAS  PubMed  Google Scholar 

  93. Zhou Z, Neher E. Calcium permeability of nicotinic acetylcholine receptor channels in bovine adrenal chromaffin cells. Pflugers Arch. 1993;425(5–6):511–7.

    CAS  PubMed  Google Scholar 

  94. Neher E. The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology. 1995;34(11):1423–42.

    CAS  PubMed  Google Scholar 

  95. Fucile S, et al. Fractional Ca(2+) current through human neuronal alpha7 nicotinic acetylcholine receptors. Cell Calcium. 2003;34(2):205–9.

    CAS  PubMed  Google Scholar 

  96. Gray R, et al. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature. 1996;383(6602):713–6.

    CAS  PubMed  Google Scholar 

  97. Sharma G, Vijayaraghavan S. Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron. 2003;38(6):929–39.

    CAS  PubMed  Google Scholar 

  98. Kulak JM, et al. Nicotine-evoked transmitter release from synaptosomes: functional association of specific presynaptic acetylcholine receptors and voltage-gated calcium channels. J Neurochem. 2001;77(6):1581–9.

    CAS  PubMed  Google Scholar 

  99. Zoli M, et al. Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci. 2002;22(20):8785–9.

    CAS  PubMed  Google Scholar 

  100. Soliakov L, Wonnacott S. Voltage-sensitive Ca2+ channels involved in nicotinic receptor-mediated [3H]dopamine release from rat striatal synaptosomes. J Neurochem. 1996;67(1):163–70.

    CAS  PubMed  Google Scholar 

  101. Soliakov L, Wonnacott S. Involvement of protein kinase C in the presynaptic nicotinic modulation of [(3)H]-dopamine release from rat striatal synaptosomes. Br J Pharmacol. 2001;132(3):785–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Giniatullin R, Nistri A, Yakel JL. Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci. 2005;28(7):371–8.

    CAS  PubMed  Google Scholar 

  103. Mansvelder HD, McGehee DS. Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol. 2002;53(4):606–17.

    CAS  PubMed  Google Scholar 

  104. Khiroug L, et al. Functional mapping and Ca2+ regulation of nicotinic acetylcholine receptor channels in rat hippocampal CA1 neurons. J Neurosci. 2003;23(27):9024–31.

    CAS  PubMed  Google Scholar 

  105. Quick MW, Lester RA. Desensitization of neuronal nicotinic receptors. J Neurobiol. 2002;53(4):457–78.

    CAS  PubMed  Google Scholar 

  106. Berg DK, Conroy WG. Nicotinic alpha 7 receptors: synaptic options and downstream signaling in neurons. J Neurobiol. 2002;53(4):512–23.

    CAS  PubMed  Google Scholar 

  107. Liu Q, Berg DK. Actin filaments and the opposing actions of CaM kinase II and calcineurin in regulating alpha7-containing nicotinic receptors on chick ciliary ganglion neurons. J Neurosci. 1999;19(23):10280–8.

    CAS  PubMed  Google Scholar 

  108. Gomez-Varela D, et al. PMCA2 via PSD-95 controls calcium signaling by alpha7-containing nicotinic acetylcholine receptors on aspiny interneurons. J Neurosci. 2012;32(20):6894–905.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Klein RC, Yakel JL. Paired-pulse potentiation of alpha7-containing nAChRs in rat hippocampal CA1 stratum radiatum interneurones. J Physiol. 2005;568(Pt 3):881–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Fenster CP, et al. Desensitization of nicotinic receptors in the central nervous system. Ann N Y Acad Sci. 1999;868:620–3.

    CAS  PubMed  Google Scholar 

  111. Lozada AF, et al. Induction of dendritic spines by beta2-containing nicotinic receptors. J Neurosci. 2012;32(24):8391–400.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Fernandes CC, Berg DK, Gomez-Varela D. Lateral mobility of nicotinic acetylcholine receptors on neurons is determined by receptor composition, local domain, and cell type. J Neurosci. 2010;30(26):8841–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Bruses JL, Chauvet N, Rutishauser U. Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci. 2001;21(2):504–12.

    CAS  PubMed  Google Scholar 

  114. Oshikawa J, et al. Nicotinic acetylcholine receptor alpha 7 regulates cAMP signal within lipid rafts. Am J Physiol Cell Physiol. 2003;285(3):C567–74.

    CAS  PubMed  Google Scholar 

  115. Colon-Saez JO, Yakel JL. The alpha7 nicotinic acetylcholine receptor function in hippocampal neurons is regulated by the lipid composition of the plasma membrane. J Physiol. 2011;589(Pt 13):3163–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Greenberg ME, Ziff EB, Greene LA. Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science. 1986;234(4772):80–3.

    CAS  PubMed  Google Scholar 

  117. Hu M, et al. Nicotinic regulation of CREB activation in hippocampal neurons by glutamatergic and nonglutamatergic pathways. Mol Cell Neurosci. 2002;21(4):616–25.

    CAS  PubMed  Google Scholar 

  118. Campbell NR, et al. Endogenous signaling through alpha7-containing nicotinic receptors promotes maturation and integration of adult-born neurons in the hippocampus. J Neurosci. 2010;30(26):8734–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Dunckley T, Lukas RJ. Nicotine modulates the expression of a diverse set of genes in the neuronal SH-SY5Y cell line. J Biol Chem. 2003;278(18):15633–40.

    CAS  PubMed  Google Scholar 

  120. Chang KT, Berg DK. Voltage-gated channels block nicotinic regulation of CREB phosphorylation and gene expression in neurons. Neuron. 2001;32(5):855–65.

    CAS  PubMed  Google Scholar 

  121. Nakayama H, et al. Nicotine-induced phosphorylation of extracellular signal-regulated protein kinase and CREB in PC12h cells. J Neurochem. 2001;79(3):489–98.

    CAS  PubMed  Google Scholar 

  122. Dajas-Bailador FA, Soliakov L, Wonnacott S. Nicotine activates the extracellular signal-regulated kinase 1/2 via the alpha7 nicotinic acetylcholine receptor and protein kinase A, in SH-SY5Y cells and hippocampal neurones. J Neurochem. 2002;80(3):520–30.

    CAS  PubMed  Google Scholar 

  123. Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem. 2001;76(1):1–10.

    CAS  PubMed  Google Scholar 

  124. Blozovski D. Deficits in passive avoidance learning in young rats following mecamylamine injections in the hippocampo-entorhinal area. Exp Brain Res. 1983;50(2–3):442–8.

    CAS  PubMed  Google Scholar 

  125. Blozovski D. Mediation of passive avoidance learning by nicotinic hippocampo-entorhinal components in young rats. Dev Psychobiol. 1985;18(4):355–66.

    CAS  PubMed  Google Scholar 

  126. Davis JA, Kenney JW, Gould TJ. Hippocampal alpha4beta2 nicotinic acetylcholine receptor involvement in the enhancing effect of acute nicotine on contextual fear conditioning. J Neurosci. 2007;27(40):10870–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Izquierdo I, et al. The evidence for hippocampal long-term potentiation as a basis of memory for simple tasks. An Acad Bras Cienc. 2008;80(1):115–27.

    PubMed  Google Scholar 

  128. Dutar P, et al. The septohippocampal pathway: structure and function of a central cholinergic system. Physiol Rev. 1995;75(2):393–427.

    CAS  PubMed  Google Scholar 

  129. Kenney JW, Gould TJ. Modulation of hippocampus-dependent learning and synaptic plasticity by nicotine. Mol Neurobiol. 2008;38(1):101–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Fujii S, Sumikawa K. Nicotine accelerates reversal of long-term potentiation and enhances long-term depression in the rat hippocampal CA1 region. Brain Res. 2001;894(2):340–6.

    CAS  PubMed  Google Scholar 

  131. Ji D, Lape R, Dani JA. Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron. 2001;31(1):131–41.

    CAS  PubMed  Google Scholar 

  132. McGehee DS. Nicotinic receptors and hippocampal synaptic plasticity … it’s all in the timing. Trends Neurosci. 2002;25(4):171–2.

    CAS  PubMed  Google Scholar 

  133. Cobb SR, Davies CH. Cholinergic modulation of hippocampal cells and circuits. J Physiol. 2005;562(Pt 1):81–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Maylie J, Adelman JP. Cholinergic signaling through synaptic SK channels: it's a protein kinase but which one? Neuron. 2010;68(5):809–11.

    CAS  PubMed  Google Scholar 

  135. Fujii S, et al. Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Res. 1999;846(1):137–43.

    CAS  PubMed  Google Scholar 

  136. Mann EO, Greenfield SA. Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro. J Physiol. 2003;551(Pt 2):539–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Welsby P, Rowan M, Anwyl R. Nicotinic receptor-mediated enhancement of long-term potentiation involves activation of metabotropic glutamate receptors and ryanodine-sensitive calcium stores in the dentate gyrus. Eur J Neurosci. 2006;24(11):3109–18.

    PubMed  Google Scholar 

  138. Welsby PJ, Rowan MJ, Anwyl R. Beta-amyloid blocks high frequency stimulation induced LTP but not nicotine enhanced LTP. Neuropharmacology. 2007;53(1):188–95.

    CAS  PubMed  Google Scholar 

  139. Ge S, Dani JA. Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. J Neurosci. 2005;25(26):6084–91.

    CAS  PubMed  Google Scholar 

  140. Gahwiler BH, Brown DA. Functional innervation of cultured hippocampal neurones by cholinergic afferents from co-cultured septal explants. Nature. 1985;313(6003):577–9.

    CAS  PubMed  Google Scholar 

  141. Gahwiler BH, Hefti F. Guidance of acetylcholinesterase-containing fibres by target tissue in co-cultured brain slices. Neuroscience. 1984;13(3):681–9.

    CAS  PubMed  Google Scholar 

  142. Rimvall K, Keller F, Waser PG. Development of cholinergic projections in organotypic cultures of rat septum, hippocampus and cerebellum. Brain Res. 1985;351(2):267–78.

    CAS  PubMed  Google Scholar 

  143. Fischer Y, Gahwiler BH, Thompson SM. Activation of intrinsic hippocampal theta oscillations by acetylcholine in rat septo-hippocampal cocultures. J Physiol. 1999;519(Pt 2):405–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Gu Z, Lamb PW, Yakel JL. Cholinergic coordination of presynaptic and postsynaptic activity induces timing-dependent hippocampal synaptic plasticity. J Neurosci. 2012;32(36):12337–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Tu B, et al. Characterization of a nicotine-sensitive neuronal population in rat entorhinal cortex. J Neurosci. 2009;29(33):10436–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Frotscher M, Leranth C. Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J Comp Neurol. 1985;239(2):237–46.

    CAS  PubMed  Google Scholar 

  147. Lawrence JJ, et al. Muscarinic receptor activation tunes mouse stratum oriens interneurones to amplify spike reliability. J Physiol. 2006;571(Pt 3):555–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Lawrence JJ, et al. Cell type-specific dependence of muscarinic signalling in mouse hippocampal stratum oriens interneurones. J Physiol. 2006;570(Pt 3):595–610.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Buzsaki G. Theta oscillations in the hippocampus. Neuron. 2002;33(3):325–40.

    CAS  PubMed  Google Scholar 

  150. Royer S, et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci. 2012;15(5):769–75.

    CAS  PubMed  Google Scholar 

  151. Barry C, Heys JG, Hasselmo ME. Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells. Front Neural Circuits. 2012;6:5.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Turski L, et al. Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse. 1989;3(2):154–71.

    CAS  PubMed  Google Scholar 

  153. Bertrand S, et al. Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy. Br J Pharmacol. 1998;125(4):751–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Damaj MI, et al. Pharmacological characterization of nicotine-induced seizures in mice. J Pharmacol Exp Ther. 1999;291(3):1284–91.

    CAS  PubMed  Google Scholar 

  155. Fodale V, et al. Alzheimer’s disease and anaesthesia: implications for the central cholinergic system. Br J Anaesth. 2006;97(4):445–52.

    CAS  PubMed  Google Scholar 

  156. Dani JA, Ji D, Zhou FM. Synaptic plasticity and nicotine addiction. Neuron. 2001;31(3):349–52.

    CAS  PubMed  Google Scholar 

  157. Placzek AN, Dani JA. Synaptic plasticity within midbrain dopamine centers contributes to nicotine addiction. Nebr Symp Motiv. 2009;55:5–15.

    PubMed  Google Scholar 

  158. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988;85(14):5274–8.

    PubMed Central  PubMed  Google Scholar 

  159. Pidoplichko VI, et al. Nicotine activates and desensitizes midbrain dopamine neurons. Nature. 1997;390(6658):401–4.

    CAS  PubMed  Google Scholar 

  160. Laviolette SR, van der Kooy D. The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci. 2004;5(1):55–65.

    CAS  PubMed  Google Scholar 

  161. Mansvelder HD, McGehee DS. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron. 2000;27(2):349–57.

    CAS  PubMed  Google Scholar 

  162. O’Neill MJ, et al. The role of neuronal nicotinic acetylcholine receptors in acute and chronic neurodegeneration. Curr Drug Targets CNS Neurol Disord. 2002;1(4):399–411.

    PubMed  Google Scholar 

  163. Parri HR, Hernandez CM, Dineley KT. Research update: alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem Pharmacol. 2011;82(8):931–42.

    CAS  PubMed  Google Scholar 

  164. Donnelly-Roberts DL, et al. In vitro neuroprotective properties of the novel cholinergic channel activator (ChCA), ABT-418. Brain Res. 1996;719(1–2):36–44.

    CAS  PubMed  Google Scholar 

  165. Dajas-Bailador FA, Lima PA, Wonnacott S. The alpha7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca(2+) dependent mechanism. Neuropharmacology. 2000;39(13):2799–807.

    CAS  PubMed  Google Scholar 

  166. Ferchmin PA, et al. Nicotinic receptors differentially regulate N-methyl-d-aspartate damage in acute hippocampal slices. J Pharmacol Exp Ther. 2003;305(3):1071–8.

    CAS  PubMed  Google Scholar 

  167. Prendergast MA, et al. Chronic nicotine exposure reduces N-methyl-d-aspartate receptor-mediated damage in the hippocampus without altering calcium accumulation or extrusion: evidence of calbindin-D28K overexpression. Neuroscience. 2001;102(1):75–85.

    CAS  PubMed  Google Scholar 

  168. Stevens TR, et al. Neuroprotection by nicotine in mouse primary cortical cultures involves activation of calcineurin and l-type calcium channel inactivation. J Neurosci. 2003;23(31):10093–9.

    CAS  PubMed  Google Scholar 

  169. Kihara T, et al. Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol. 1997;42(2):159–63.

    CAS  PubMed  Google Scholar 

  170. Svensson AL, Nordberg A. Beta-estradiol attenuate amyloid beta-peptide toxicity via nicotinic receptors. Neuroreport. 1999;10(17):3485–9.

    CAS  PubMed  Google Scholar 

  171. Terry Jr AV, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther. 2003;306(3):821–7.

    CAS  PubMed  Google Scholar 

  172. Pandya AA, Yakel JL. Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies. Biochem Pharmacol. 2013;86:1054–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Coe JW, et al. Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J Med Chem. 2005;48(10):3474–7.

    CAS  PubMed  Google Scholar 

  174. Rollema H, et al. Pre-clinical properties of the alpha4beta2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence. Br J Pharmacol. 2010;160(2):334–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Foulds J. The neurobiological basis for partial agonist treatment of nicotine dependence: varenicline. Int J Clin Pract. 2006;60(5):571–6.

    CAS  PubMed  Google Scholar 

  176. Billen B, et al. Molecular actions of smoking cessation drugs at alpha4beta2 nicotinic receptors defined in crystal structures of a homologous binding protein. Proc Natl Acad Sci U S A. 2012;109(23):9173–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Rahman S. Nicotinic receptors as therapeutic targets for drug addictive disorders. CNS Neurol Disord Drug Targets. 2013;12(5):633–40.

    CAS  PubMed  Google Scholar 

  178. Chang YC, et al. Allosteric activation mechanism of the cys-loop receptors. Acta Pharmacol Sin. 2009;30(6):663–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Taly A, et al. Implications of the quaternary twist allosteric model for the physiology and pathology of nicotinic acetylcholine receptors. Proc Natl Acad Sci U S A. 2006;103(45):16965–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Edelstein SJ, et al. A kinetic mechanism for nicotinic acetylcholine receptors based on multiple allosteric transitions. Biol Cybern. 1996;75(5):361–79.

    CAS  PubMed  Google Scholar 

  181. Lena C, Changeux JP. Allosteric modulations of the nicotinic acetylcholine receptor. Trends Neurosci. 1993;16(5):181–6.

    CAS  PubMed  Google Scholar 

  182. Grosman C, Auerbach A. The dissociation of acetylcholine from open nicotinic receptor channels. Proc Natl Acad Sci U S A. 2001;98(24):14102–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Hille B. Ion channels of excitable membranes. 3rd ed. Sunderland, MA: Sinauer; 2001. p. 814. xviii.

    Google Scholar 

  184. Paradiso K, Zhang J, Steinbach JH. The C terminus of the human nicotinic alpha4beta2 receptor forms a binding site required for potentiation by an estrogenic steroid. J Neurosci. 2001;21(17):6561–8.

    CAS  PubMed  Google Scholar 

  185. Bertrand D, Gopalakrishnan M. Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol. 2007;74(8):1155–63.

    CAS  PubMed  Google Scholar 

  186. Pandya A, Yakel JL. Allosteric modulators of the alpha4beta2 subtype of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol. 2011;82(8):952–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Kim JS, et al. Synthesis of desformylflustrabromine and its evaluation as an alpha4beta2 and alpha7 nACh receptor modulator. Bioorg Med Chem Lett. 2007;17(17):4855–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  188. German N, et al. Deconstruction of the alpha4beta2 nicotinic acetylcholine receptor positive allosteric modulator desformylflustrabromine. J Med Chem. 2011;54(20):7259–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Collins T, Young GT, Millar NS. Competitive binding at a nicotinic receptor transmembrane site of two alpha7-selective positive allosteric modulators with differing effects on agonist-evoked desensitization. Neuropharmacology. 2011;61(8):1306–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Henderson BJ, et al. Negative allosteric modulators that target human alpha4beta2 neuronal nicotinic receptors. J Pharmacol Exp Ther. 2011;334(3):761–74.

    Google Scholar 

  191. Young GT, et al. Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc Natl Acad Sci U S A. 2008;105(38):14686–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Arias HR, et al. Novel positive allosteric modulators of the human alpha7 nicotinic acetylcholine receptor. Biochemistry. 2011;50(23):5263–78.

    CAS  PubMed  Google Scholar 

  193. Pavlovicz RE, et al. Identification of a negative allosteric site on human alpha4beta2 and alpha3beta4 neuronal nicotinic acetylcholine receptors. PLoS One. 2011;6(9):e24949.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Taly A, et al. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov. 2009;8(9):733–50.

    CAS  PubMed  Google Scholar 

  195. Changeux JP, Taly A. Nicotinic receptors, allosteric proteins and medicine. Trends Mol Med. 2008;14(3):93–102.

    CAS  PubMed  Google Scholar 

  196. Maelicke A, Albuquerque EX. Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer’s disease. Eur J Pharmacol. 2000;393(1–3):165–70.

    CAS  PubMed  Google Scholar 

  197. Romanelli MN, Gualtieri F. Cholinergic nicotinic receptors: competitive ligands, allosteric modulators, and their potential applications. Med Res Rev. 2003;23(4):393–426.

    CAS  PubMed  Google Scholar 

  198. Whiteaker P, Sharples CG, Wonnacott S. Agonist-induced up-regulation of alpha4beta2 nicotinic acetylcholine receptors in M10 cells: pharmacological and spatial definition. Mol Pharmacol. 1998;53(5):950–62.

    CAS  PubMed  Google Scholar 

  199. Buccafusco JJ, Beach JW, Terry Jr AV. Desensitization of nicotinic acetylcholine receptors as a strategy for drug development. J Pharmacol Exp Ther. 2009;328(2):364–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Lu Y, Marks MJ, Collins AC. Desensitization of nicotinic agonist-induced [3H]gamma-aminobutyric acid release from mouse brain synaptosomes is produced by subactivating concentrations of agonists. J Pharmacol Exp Ther. 1999;291(3):1127–34.

    CAS  PubMed  Google Scholar 

  201. Sallette J, et al. Nicotine upregulates its own receptors through enhanced intracellular maturation. Neuron. 2005;46(4):595–607.

    CAS  PubMed  Google Scholar 

  202. Miwa JM, Lester HA, Walz A. Optimizing cholinergic tone through lynx modulators of nicotinic receptors: implications for plasticity and nicotine addiction. Physiology (Bethesda). 2012;27(4):187–99.

    CAS  Google Scholar 

  203. Hurst RS, et al. A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J Neurosci. 2005;25(17):4396–405.

    CAS  PubMed  Google Scholar 

  204. Dunlop J, et al. Old and new pharmacology: positive allosteric modulation of the alpha7 nicotinic acetylcholine receptor by the 5-hydroxytryptamine(2B/C) receptor antagonist SB-206553 (3,5-dihydro-5-methyl-N-3-pyridinylbenzo[1,2-b:4,5-b′]di pyrrole-1(2H)-carboxamide). J Pharmacol Exp Ther. 2009;328(3):766–76.

    CAS  PubMed  Google Scholar 

  205. Dinklo T, et al. Characterization of 2-[[4-fluoro-3-(trifluoromethyl)phenyl]amino]-4-(4-pyridinyl)-5-thiazolemethanol (JNJ-1930942), a novel positive allosteric modulator of the {alpha}7 nicotinic acetylcholine receptor. J Pharmacol Exp Ther. 2011;336(2):560–74.

    CAS  PubMed  Google Scholar 

  206. Thomsen MS, El-Sayed M, Mikkelsen JD. Differential immediate and sustained memory enhancing effects of alpha7 nicotinic receptor agonists and allosteric modulators in rats. PLoS One. 2011;6(11):e27014.

    CAS  PubMed Central  PubMed  Google Scholar 

  207. McLean SL, et al. PNU-120596, a positive allosteric modulator of alpha7 nicotinic acetylcholine receptors, reverses a sub-chronic phencyclidine-induced cognitive deficit in the attentional set-shifting task in female rats. J Psychopharmacol. 2012;26(9):1265–70.

    CAS  PubMed  Google Scholar 

  208. Pandya AA, Yakel JL. Activation of the alpha7 nicotinic ACh receptor induces anxiogenic effects in rats which is blocked by a 5-HT(1a) receptor antagonist. Neuropharmacology. 2013;70C:35–42.

    Google Scholar 

  209. Timmermann DB, et al. An allosteric modulator of the alpha7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo. J Pharmacol Exp Ther. 2007;323(1):294–307.

    CAS  PubMed  Google Scholar 

  210. Ng HJ, et al. Nootropic alpha7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators. Proc Natl Acad Sci U S A. 2007;104(19):8059–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Johnstone TB, et al. Allosteric modulation of related ligand-gated ion channels synergistically induces long-term potentiation in the hippocampus and enhances cognition. J Pharmacol Exp Ther. 2010;336(3):908–15.

    PubMed  Google Scholar 

  212. Munro G, et al. The alpha7 nicotinic ACh receptor agonist compound B and positive allosteric modulator PNU-120596 both alleviate inflammatory hyperalgesia and cytokine release in the rat. Br J Pharmacol. 2012;167(2):421–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Freitas K, et al. In vivo pharmacological interactions between a type ii positive allosteric modulator of alpha7 nicotinic acetylcholine receptors and nicotinic agonists in a murine tonic pain model. Br J Pharmacol. 2012;169:567–79.

    Google Scholar 

  214. Freitas K, et al. Effects of alpha 7 positive allosteric modulators in murine inflammatory and chronic neuropathic pain models. Neuropharmacology. 2013;65:156–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Zhu CZ, et al. Potentiation of analgesic efficacy but not side effects: co-administration of an alpha4beta2 neuronal nicotinic acetylcholine receptor agonist and its positive allosteric modulator in experimental models of pain in rats. Biochem Pharmacol. 2011;82(8):967–76.

    CAS  PubMed  Google Scholar 

  216. Lee CH, et al. alpha4beta2 neuronal nicotinic receptor positive allosteric modulation: an approach for improving the therapeutic index of alpha4beta2 nAChR agonists in pain. Biochem Pharmacol. 2011;82(8):959–66.

    CAS  PubMed  Google Scholar 

  217. Rode F, et al. Positive allosteric modulation of alpha4beta2 nAChR agonist induced behaviour. Brain Res. 2012;1458:67–75.

    CAS  PubMed  Google Scholar 

  218. Broad LM, et al. Identification and pharmacological profile of a new class of selective nicotinic acetylcholine receptor potentiators. J Pharmacol Exp Ther. 2006;318(3):1108–17.

    CAS  PubMed  Google Scholar 

  219. Yoshimura RF, et al. Negative allosteric modulation of nicotinic acetylcholine receptors blocks nicotine self-administration in rats. J Pharmacol Exp Ther. 2007;323(3):907–15.

    CAS  PubMed  Google Scholar 

  220. Valera S, Ballivet M, Bertrand D. Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A. 1992;89(20):9949–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Timmermann DB, et al. Augmentation of cognitive function by NS9283, a stoichiometry-dependent positive allosteric modulator of alpha2- and alpha4-containing nicotinic acetylcholine receptors. Br J Pharmacol. 2012;167(1):164–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Levandoski MM, Piket B, Chang J. The anthelmintic levamisole is an allosteric modulator of human neuronal nicotinic acetylcholine receptors. Eur J Pharmacol. 2003;471(1):9–20.

    CAS  PubMed  Google Scholar 

  223. Wu TY, et al. Morantel allosterically enhances channel gating of neuronal nicotinic acetylcholine alpha 3 beta 2 receptors. Mol Pharmacol. 2008;74(2):466–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Mineur YS, et al. Nicotine decreases food intake through activation of POMC neurons. Science. 2011;332(6035):1330–2.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerrel L. Yakel Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yakel, J.L. (2014). Functional Distribution and Regulation of Neuronal Nicotinic ACh Receptors in the Mammalian Brain. In: Lester, R. (eds) Nicotinic Receptors. The Receptors, vol 26. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1167-7_5

Download citation

Publish with us

Policies and ethics