Skip to main content

Light Sheet-Based Imaging and Analysis of Early Embryogenesis in the Fruit Fly

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1189))

Abstract

The fruit fly is an excellent model system for investigating the sequence of epithelial tissue invaginations constituting the process of gastrulation. By combining recent advancements in light sheet fluorescence microscopy (LSFM) and image processing, the three-dimensional fly embryo morphology and relevant gene expression patterns can be accurately recorded throughout the entire process of embryogenesis. LSFM provides exceptionally high imaging speed, high signal-to-noise ratio, low level of photoinduced damage, and good optical penetration depth. This powerful combination of capabilities makes LSFM particularly suitable for live imaging of the fly embryo.

The resulting high-information-content image data are subsequently processed to obtain the outlines of cells and cell nuclei, as well as the geometry of the whole embryo tissue by image segmentation. Furthermore, morphodynamics information is extracted by computationally tracking objects in the image. Towards that goal we describe the successful implementation of a fast fitting strategy of Gaussian mixture models.

The data obtained by image processing is well-suited for hypothesis testing of the detailed biomechanics of the gastrulating embryo. Typically this involves constructing computational mechanics models that consist of an objective function providing an estimate of strain energy for a given morphological configuration of the tissue, and a numerical minimization mechanism of this energy, achieved by varying morphological parameters.

In this chapter, we provide an overview of in vivo imaging of fruit fly embryos using LSFM, computational tools suitable for processing the resulting images, and examples of computational biomechanical simulations of fly embryo gastrulation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Khairy K, Keller PJ (2011) Reconstructing embryonic development. Genesis 49(7):488–513

    Article  PubMed  Google Scholar 

  2. Pawley JB (2006) Handbook of biological confocal microscopy. Springer, New York, NY

    Book  Google Scholar 

  3. Diaspro A, Chirico G, Collini M (2005) Two-photon fluorescence excitation and related techniques in biological microscopy. Q Rev Biophys 38(2):97–166

    Article  PubMed  CAS  Google Scholar 

  4. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940

    Article  PubMed  CAS  Google Scholar 

  5. Graf R, Rietdorf J, Zimmermann T (2005) Live cell spinning disk microscopy. Adv Biochem Eng Biotechnol 95:57–75

    PubMed  Google Scholar 

  6. Keller PJ, Dodt HU (2011) Light sheet microscopy of living or cleared specimens. Curr Opin Neurobiol 22(1):138–143

    Article  PubMed  Google Scholar 

  7. Tomer R, Khairy K, Keller PJ (2011) Shedding light on the system: studying embryonic development with light sheet microscopy. Curr Opin Genet Dev 21(5):558–565

    Article  PubMed  CAS  Google Scholar 

  8. Weber M, Huisken J (2011) Light sheet microscopy for real-time developmental biology. Curr Opin Genet Dev 21(5):566–572

    Article  PubMed  CAS  Google Scholar 

  9. Mertz J (2011) Optical sectioning microscopy with planar or structured illumination. Nat Methods 8(10):811–819

    Article  PubMed  CAS  Google Scholar 

  10. Siedentopf H, Zsigmondy R (1903) Über Sichtbarmachung und Größenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann Phys 315(1):1–39

    Article  Google Scholar 

  11. Voie AH, Burns DH, Spelman FA (1993) Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc 170(3):229–236

    Article  PubMed  CAS  Google Scholar 

  12. Huisken J et al (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009

    Article  PubMed  CAS  Google Scholar 

  13. Keller PJ et al (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322(5904):1065–1069

    Article  PubMed  CAS  Google Scholar 

  14. Tomer R et al (2012) Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods 9(7):755–763

    Article  PubMed  Google Scholar 

  15. Arnaout R et al (2007) Zebrafish model for human long QT syndrome. Proc Natl Acad Sci U S A 104(27):11316–11321

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Scherz PJ et al (2008) High-speed imaging of developing heart valves reveals interplay of morphogenesis and function. Development 135(6):1179–1187

    Article  PubMed  CAS  Google Scholar 

  17. Swoger J et al (2007) Multi-view image fusion improves resolution in three-dimensional microscopy. Opt Express 15(13):8029–8042

    Article  PubMed  Google Scholar 

  18. Truong TV et al (2011) Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat Methods 8(9):757–760

    Article  PubMed  CAS  Google Scholar 

  19. Huisken J, Stainier DY (2007) Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt Lett 32(17):2608–2610

    Article  PubMed  Google Scholar 

  20. Dodt HU et al (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4(4):331–336

    Article  PubMed  CAS  Google Scholar 

  21. Preibisch S et al (2010) Software for bead-based registration of selective plane illumination microscopy data. Nat Methods 7(6):418–419

    Article  PubMed  CAS  Google Scholar 

  22. Rubio-Guivernau JL et al (2012) Wavelet-based image fusion in multi-view three-dimensional microscopy. Bioinformatics 28(2):238–245

    Article  PubMed  CAS  Google Scholar 

  23. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  24. Lucy LB (1974) An iterative technique for the rectification of observed distributions. Astron J 79(6):745–754

    Article  Google Scholar 

  25. Santella A et al (2010) A hybrid blob-slice model for accurate and efficient detection of fluorescence labeled nuclei in 3D. BMC Bioinformatics 11:580

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li G et al (2007) 3D cell nuclei segmentation based on gradient flow tracking. BMC Cell Biol 8:40

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu C, Prince J (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Proc 7(3):359–369

    Article  CAS  Google Scholar 

  28. Lin G et al (2003) A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry A 56(1):23–36

    Article  PubMed  Google Scholar 

  29. Dufour A et al (2005) Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Trans Image Process 14(9):1396–1410

    Article  PubMed  Google Scholar 

  30. Pop S et al (2013) Extracting 3D cell parameters from dense tissue environments: application to the development of the mouse heart. Bioinformatics 29(6):772–779

    Article  PubMed  CAS  Google Scholar 

  31. Smal I et al (2008) Multiple object tracking in molecular bioimaging by Rao-Blackwellized marginal particle filtering. Med Image Anal 12(6):764–777

    Article  PubMed  CAS  Google Scholar 

  32. Kausler BX et al (2012) A discrete chain graph model for 3D + t cell tracking with high misdirection robustness. In: Fitzgibbon A et al (eds) Computer vision - ECCV 2012. Springer, Berlin, pp 144–157. doi:10.1007/978-3-642-33712-3_11

    Chapter  Google Scholar 

  33. McMahon A et al (2008) Dynamic analyses of Drosophila gastrulation provide insights into collective cell migration. Science 322(5907):1546–1550

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Megason SG (2009) In toto imaging of embryogenesis with confocal time-lapse microscopy. Methods Mol Biol 546:317–332

    Article  PubMed  PubMed Central  Google Scholar 

  35. Giurumescu CA et al (2012) Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos. Development 139(22):4271–4279

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Farge E (2003) Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol 13(16):1365–1377

    Article  PubMed  CAS  Google Scholar 

  37. Wyczalkowski MA et al (2012) Computational models for mechanics of morphogenesis. Birth Def Res C Emb Today 96(2):132–152

    Article  CAS  Google Scholar 

  38. Leptin M (1999) Gastrulation in Drosophila: the logic and the cellular mechanisms. EMBO J 18(12):3187–3192

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Gelbart MA et al (2012) Volume conservation principle involved in cell lengthening and nucleus movement during tissue morphogenesis. Proc Natl Acad Sci U S A 109(47):19298–19303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Martin AC, Kaschube M, Wieschaus EF (2009) Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457(7228):495–499

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Munoz JJ, Barrett K, Miodownik M (2007) A deformation gradient decomposition method for the analysis of the mechanics of morphogenesis. J Biomech 40(6):1372–1380

    Article  PubMed  Google Scholar 

  42. Conte V et al (2009) Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes. Phys Biol 6(1):016010

    Article  PubMed  Google Scholar 

  43. Conte V, Munoz JJ, Miodownik M (2008) A 3D finite element model of ventral furrow invagination in the Drosophila melanogaster embryo. J Mech Behav Biomed Mater 1(2):188–198

    Article  PubMed  Google Scholar 

  44. Munoz JJ (2008) Modelling unilateral frictionless contact using the null-space method and cubic B-Spline interpolation. Comput Methods Appl Mech Eng 197:979–993

    Article  Google Scholar 

  45. Kellog OD (1953) Foundations of potential theory. Springer, Berlin

    Google Scholar 

  46. Allena R, Aubry D (2012) An extensive numerical simulation of the cephalic furrow formation in Drosophila embryo. Comput Methods Biomech Biomed Engin 15(5):445–455

    Article  PubMed  CAS  Google Scholar 

  47. Brodland GW et al (2010) Video force microscopy reveals the mechanics of ventral furrow invagination in Drosophila. Proc Natl Acad Sci U S A 107(51):22111–22116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Viens D, Brodland GW (2007) A three-dimensional finite element model for the mechanics of cell-cell interactions. J Biomech Eng 129(5):651–657

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp J. Keller Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Khairy, K., Lemon, W.C., Amat, F., Keller, P.J. (2015). Light Sheet-Based Imaging and Analysis of Early Embryogenesis in the Fruit Fly. In: Nelson, C. (eds) Tissue Morphogenesis. Methods in Molecular Biology, vol 1189. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1164-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1164-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1163-9

  • Online ISBN: 978-1-4939-1164-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics