Skip to main content

Amniotic Fluid Stem Cells for Wound Healing

  • Chapter
  • First Online:
Perinatal Stem Cells

Abstract

Amniotic fluid-derived stem (AFS) cells are an attractive cell source for applications in regenerative medicine due to their proliferation capacity, multipotency, immunomodulatory activity, and lack of significant immunogenicity. In addition, they have the ability to modulate inflammatory responses and secrete therapeutic cytokines. Because of these characteristics, AFS cells have been explored for treatments in wound healing and skin regeneration. Studies show that AFS cells are effective in accelerating wound healing in skin in fetal environments, and more recently in adult wounds. Evidence indicates that delivered cells are often transient, not permanently integrating into the final skin tissue. Instead, they secrete a portfolio of potent growth factors that are integral to skin regeneration and angiogenesis, suggesting a trophic mechanism of augmenting wound healing. These initial works of research suggest that delivery of AFS cells has potential to be an effective cell therapy for facilitating wound healing and should be further considered for clinical use in excessive skin wounds in human patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cherry DK, Hing E, Woodwell DA, et al. National Ambulatory Medical Care Survey summary. Natl Health Stat Rep. 2006;6(3):1–39.

    Google Scholar 

  2. Pitts SR, Niska RW, Xu J, et al. National Hospital Ambulatory Medical Care Survey: 2006 emergency department summary. Natl Health Stat Rep. 2008;6(7):1–38.

    Google Scholar 

  3. Miller SF, Bessey P, Lentz CW, et al. National burn repository 2007 report: a synopsis of the 2007 call for data. J Burn Care Res. 2008;29:862–70. discussion 871.

    Article  PubMed  Google Scholar 

  4. Peck MD. Epidemiology of burns throughout the world. Part I: distribution and risk factors. Burns. 2011;37:1087–100.

    Article  PubMed  Google Scholar 

  5. Kurd SK, Hoffstad OJ, Bilker WB, et al. Evaluation of the use of prognostic information for the care of individuals with venous leg ulcers or diabetic neuropathic foot ulcers. Wound Repair Regen. 2009;17:318–25.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Sen CK, Gordillo GM, Roy S, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17:763–71.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Latenser BA. Critical care of the burn patient: the first 48 hours. Crit Care Med. 2009;37:2819–26.

    Article  CAS  PubMed  Google Scholar 

  8. Holavanahalli RK, Helm PA, Kowalske KJ. Long-term outcomes in patients surviving large burns: the skin. J Burn Care Res. 2010;31:631–9.

    Article  PubMed  Google Scholar 

  9. Lesher AP, Curry RH, Evans J, et al. Effectiveness of Biobrane for treatment of partial-thickness burns in children. J Pediatr Surg. 2011;46:1759–63.

    Article  PubMed  Google Scholar 

  10. Rahmanian-Schwarz A, Beiderwieden A, Willkomm LM, et al. A clinical evaluation of Biobrane((R)) and Suprathel((R)) in acute burns and reconstructive surgery. Burns. 2011;37:1343–8.

    Article  PubMed  Google Scholar 

  11. Lloyd EC, Rodgers BC, Michener M, et al. Outpatient burns: prevention and care. Am Fam Physician. 2012;85:25–32.

    Google Scholar 

  12. Yoo JJ, Atala A, Binder KW, et al. Delivery system. US Patent Application No. 12/986,812. Patent No. US2011/0172611 A1. 2011.

    Google Scholar 

  13. Skardal A, Mack D, Kapetanovic E, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1:792–802.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Maxson S, Lopez EA, Yoo D, et al. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med. 2012;1:142–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. De Coppi P, Bartsch Jr G, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6.

    Article  PubMed  Google Scholar 

  16. Moorefield EC, McKee EE, Solchaga L, et al. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS One. 2011;6:e26535.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341–7.

    Article  CAS  PubMed  Google Scholar 

  18. Choi SA, Choi HS, Kim KJ, et al. Isolation of canine mesenchymal stem cells from amniotic fluid and differentiation into hepatocyte-like cells. In Vitro Cell Dev Biol Anim. 2012;49(1):42–51.

    Article  PubMed  Google Scholar 

  19. Chun SY, Mack DL, Moorefield E, et al. Pdx1 and controlled culture conditions induced differentiation of human amniotic fluid-derived stem cells to insulin-producing clusters. J Tissue Eng Regen Med. 2012; [Epub ahead of print].

    Google Scholar 

  20. Kolambkar YM, Peister A, Soker S, et al. Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol. 2007;38:405–13.

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigues MT, Lee SJ, Gomes ME, et al. Amniotic fluid-derived stem cells as a cell source for bone tissue engineering. Tissue Eng Part A. 2012;18:2518–27.

    Article  CAS  PubMed  Google Scholar 

  22. Santana AC, Delle H, Cavaglieri RC, et al. Protective effects of human amniotic fluid stem cells in a model of aorta allograft vasculopathy in rats. Transplant Proc. 2012;44:2490–4.

    Article  CAS  PubMed  Google Scholar 

  23. Bitsika V, Vlahou A, Roubelakis MG. Fetal mesenchymal stem cells in cancer therapy. Curr Stem Cell Res Ther. 2013;8(2):133–43.

    Article  CAS  PubMed  Google Scholar 

  24. Bitsika V, Roubelakis MG, Zagoura D, et al. Human amniotic fluid-derived mesenchymal stem cells as therapeutic vehicles: a novel approach for the treatment of bladder cancer. Stem Cells Dev. 2012;21:1097–111.

    Article  CAS  PubMed  Google Scholar 

  25. Gao X, Devoe LD, Given KS. Effects of amniotic fluid on proteases: a possible role of amniotic fluid in fetal wound healing. Ann Plast Surg. 1994;33:128–34. discussion 134–125.

    Article  CAS  PubMed  Google Scholar 

  26. West DC, Shaw DM, Lorenz P, et al. Fibrotic healing of adult and late gestation fetal wounds correlates with increased hyaluronidase activity and removal of hyaluronan. Int J Biochem Cell Biol. 1997;29:201–10.

    Article  CAS  PubMed  Google Scholar 

  27. Allison D, Grande-Allen K. Hyaluronan: a powerful tissue engineering tool. Biomaterials. 2006;12:2131–40.

    CAS  Google Scholar 

  28. Chrissouli S, Pratsinis H, Velissariou V, et al. Human amniotic fluid stimulates the proliferation of human fetal and adult skin fibroblasts: the roles of bFGF and PDGF and of the ERK and Akt signaling pathways. Wound Repair Regen. 2010;18:643–54.

    Article  PubMed  Google Scholar 

  29. Kathju S, Gallo PH, Satish L. Scarless integumentary wound healing in the mammalian fetus: molecular basis and therapeutic implications. Birth Defects Res C Embryo Today. 2012;96:223–36.

    Article  CAS  PubMed  Google Scholar 

  30. Yoon BS, Moon JH, Jun EK, et al. Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells. Stem Cells Dev. 2010;19:887–902.

    Article  CAS  PubMed  Google Scholar 

  31. Sorrell JM, Caplan AI. Topical delivery of mesenchymal stem cells and their function in wounds. Stem Cell Res Ther. 2010;1:30.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Yamaguchi Y, Kubo T, Murakami T, et al. Bone marrow cells differentiate into wound myofibroblasts and accelerate the healing of wounds with exposed bones when combined with an occlusive dressing. Br J Dermatol. 2005;152:616–22.

    Article  CAS  PubMed  Google Scholar 

  33. Sorrell JM, Baber MA, Caplan AI. Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng Part A. 2009;15:1751–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Klein JD, Turner CG, Steigman SA, et al. Amniotic mesenchymal stem cells enhance normal fetal wound healing. Stem Cells Dev. 2011;20:969–76.

    Article  CAS  PubMed  Google Scholar 

  35. Guan X, Delo DM, Atala A, et al. In vitro cardiomyogenic potential of human amniotic fluid stem cells. J Tissue Eng Regen Med. 2011;5(3):220–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Skardal A, Mack D, Atala A, et al. Substrate elasticity controls cell proliferation, surface marker expression and motile phenotype in amniotic fluid-derived stem cells. J Mech Behav Biomed Mater. 2013;17:307–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Liu YW, Roan JN, Wang SP, et al. Xenografted human amniotic fluid-derived stem cell as a cell source in therapeutic angiogenesis. Int J Cardiol. 2013;168(1):66–75.

    Article  PubMed  Google Scholar 

  38. Mirabella T, Cilli M, Carlone S, et al. Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischemic model. Biomaterials. 2011;32:3689–99.

    Article  CAS  PubMed  Google Scholar 

  39. Mirabella T, Hartinger J, Lorandi C, et al. Proangiogenic soluble factors from amniotic fluid stem cells mediate the recruitment of endothelial progenitors in a model of ischemic fasciocutaneous flap. Stem Cells Dev. 2012;21(12):2179–88.

    Article  CAS  PubMed  Google Scholar 

  40. Edmondson SR, Thumiger SP, Werther GA, et al. Epidermal homeostasis: the role of the growth hormone and insulin-like growth factor systems. Endocr Rev. 2003;24:737–64.

    Article  CAS  PubMed  Google Scholar 

  41. Walter MN, Wright KT, Fuller HR, et al. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res. 2010;316:1271–81.

    Article  CAS  PubMed  Google Scholar 

  42. Nousbeck J, Sarig O, Avidan N, et al. Insulin-like growth factor-binding protein 7 regulates keratinocyte proliferation, differentiation and apoptosis. J Invest Dermatol. 2010;130:378–87.

    Article  CAS  PubMed  Google Scholar 

  43. Prestwich GD, Kuo JW. Chemically-modified HA for therapy and regenerative medicine. Curr Pharm Biotechnol. 2008;9:242–5.

    Article  CAS  PubMed  Google Scholar 

  44. Prestwich GD, Shu XZ, Liu Y. Modified macromolecules and methods of making and using thereof. US Patent Application No. 10/581,571. PCT No. US2004/040726. 2011.

    Google Scholar 

  45. Zhang J, Skardal A, Prestwich GD. Engineered extracellular matrices with cleavable crosslinkers for cell expansion and easy cell recovery. Biomaterials. 2008;29:4521–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Liu Y, Skardal A, Shu XZ, et al. Prevention of peritendinous adhesions using a hyaluronan-derived hydrogel film following partial-thickness flexor tendon injury. J Orthop Res. 2008;26:562–9.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Liu Y, Shu XZ, Prestwich GD. Tumor engineering: orthotopic cancer models in mice using cell-loaded, injectable, cross-linked hyaluronan-derived hydrogels. Tissue Eng. 2007;13:1091–101.

    Article  CAS  PubMed  Google Scholar 

  48. Serban MA, Scott A, Prestwich GD. Use of hyaluronan-derived hydrogels for three-dimensional cell culture and tumor xenografts. Curr Protoc Cell Biol. 2008;Chapter 10:Unit 10 14.

    Google Scholar 

  49. Liu Y, Cai S, Shu XZ, et al. Release of basic fibroblast growth factor from a crosslinked glycosaminoglycan hydrogel promotes wound healing. Wound Repair Regen. 2007;15:245–51.

    Article  PubMed  Google Scholar 

  50. Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31: 6173–81.

    Article  CAS  PubMed  Google Scholar 

  51. Skardal A, Zhang J, McCoard L, et al. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A. 2010;16:2675–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Skardal A, Zhang J, McCoard L, et al. Dynamically crosslinked gold nanoparticle—hyaluronan hydrogels. Adv Mater. 2010;22: 4736–40.

    Article  CAS  PubMed  Google Scholar 

  53. Murphy SV, Skardal A, Atala A. Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res A. 2013;101: 272–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Skardal Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Skardal, A. (2014). Amniotic Fluid Stem Cells for Wound Healing. In: Atala, A., Murphy, S. (eds) Perinatal Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1118-9_2

Download citation

Publish with us

Policies and ethics