Skip to main content

Bimolecular Fluorescent Complementation (BiFC) by MAP Kinases and MAPK Phosphatases

  • Protocol
  • First Online:
Plant MAP Kinases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1171))

Abstract

The adaptation of plants to the environment is a key property for survival. Adaptation responses to environmental cues are generated in cells by signaling initiated from cell receptors. Signal transduction is based on protein phosphorylation that is employed in mitogen-activated protein kinase (MAPK) cascades to integrate signals from receptors to cellular responses. MAPK activity is determined by phosphorylation of amino acid residues within the kinase activation loop and their dephosphorylation by phosphatases is essential to control signal duration and intensity.

Monitoring protein–protein interactions (PPIs) of MAPKs with MAPK phosphatases in vivo provides valuable information about specificity and intracellular localization of the protein complex. Here, we report studying PPIs between Arabidopsis MAPKs and PP2C-type MAPK phosphatases using bimolecular fluorescent complementation (BiFC) in suspension cell protoplasts. The interactions of the MAPKs MPK3, MKP4 and MPK6 with the phosphatases AP2C1 and AP2C3 have been tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Richards FM (1958) On the enzymic activity of subtilisin-modified ribonuclease. Proc Natl Acad Sci U S A 44:162–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ullmann A, Jacob F, Monod J (1967) Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the beta-galactosidase structural gene of Escherichia coli. J Mol Biol 24:339–343

    Article  CAS  PubMed  Google Scholar 

  4. Messing J, Gronenborn B, Muller-Hill B, Hans Hopschneider P (1977) Filamentous coliphage M13 as a cloning vehicle: insertion of a HindII fragment of the lac regulatory region in M13 replicative form in vitro. Proc Natl Acad Sci U S A 74:3642–3646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Article  CAS  PubMed  Google Scholar 

  6. Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798

    Article  CAS  PubMed  Google Scholar 

  7. Kodama Y, Hu CD (2012) Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques 53:285–298

    Article  CAS  PubMed  Google Scholar 

  8. Citovsky V, Lee LY, Vyas S, Glick E, Chen MH, Vainstein A, Gafni Y, Gelvin SB, Tzfira T (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362:1120–1131

    Article  CAS  PubMed  Google Scholar 

  9. Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56:505–516

    Article  CAS  PubMed  Google Scholar 

  11. Qi Y, Bar-Joseph Z, Klein-Seetharaman J (2006) Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins 63:490–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

  13. Tzfira T, Vaidya M, Citovsky V (2004) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431:87–92

    Article  CAS  PubMed  Google Scholar 

  14. Bracha-Drori K, Shichrur K, Katz A, Oliva M, Angelovici R, Yalovsky S, Ohad N (2004) Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427

    Article  CAS  PubMed  Google Scholar 

  15. Pusch S, Dissmeyer N, Schnittger A (2011) Bimolecular-fluorescence complementation assay to monitor kinase-substrate interactions in vivo. Methods Mol Biol 779:245–257

    Article  CAS  PubMed  Google Scholar 

  16. Berendzen KW, Bohmer M, Wallmeroth N, Peter S, Vesic M, Zhou Y, Tiesler FK, Schleifenbaum F, Harter K (2012) Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry. Plant Methods 8:25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lumbreras V, Vilela B, Irar S, Sole M, Capellades M, Valls M, Coca M, Pages M (2010) MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. Plant J 63:1017–1030

    Article  CAS  PubMed  Google Scholar 

  18. Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H (2011) Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. Plant Cell 23:1153–1170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hamel LP, Benchabane M, Nicole MC, Major IT, Morency MJ, Pelletier G, Beaudoin N, Sheen J, Seguin A (2011) Stress-responsive mitogen-activated protein kinases interact with the EAR motif of a poplar zinc finger protein and mediate its degradation through the 26S proteasome. Plant Physiol 157:1379–1393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  CAS  PubMed  Google Scholar 

  21. Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266

    Article  CAS  PubMed  Google Scholar 

  22. Caunt CJ, Keyse SM (2013) Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS J 280:489–504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bartels S, Gonzalez Besteiro MA, Lang D, Ulm R (2010) Emerging functions for plant MAP kinase phosphatases. Trends Plant Sci 15:322–329

    Article  CAS  PubMed  Google Scholar 

  24. Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236–243

    Article  CAS  PubMed  Google Scholar 

  25. Fuchs S, Grill E, Meskiene I, Schweighofer A (2013) Type 2C protein phosphatases in plants. FEBS J 280:681–693

    Article  CAS  PubMed  Google Scholar 

  26. Meskiene I, Baudouin E, Schweighofer A, Liwosz A, Jonak C, Rodriguez PL, Jelinek H, Hirt H (2003) Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. J Biol Chem 278:18945–18952

    Article  CAS  PubMed  Google Scholar 

  27. Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Schuurink R, Mauch F, Buchala A, Cardinale F, Meskiene I (2007) The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell 19:2213–2224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Umbrasaite J, Schweighofer A, Kazanaviciute V, Magyar Z, Ayatollahi Z, Unterwurzacher V, Choopayak C, Boniecka J, Murray JA, Bogre L, Meskiene I (2010) MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis. PLoS One 5:e15357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Bartels S, Anderson JC, Gonzalez Besteiro MA, Carreri A, Hirt H, Buchala A, Metraux JP, Peck SC, Ulm R (2009) MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell 21:2884–2897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Topfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res 15:5890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Restrepo MA, Freed DD, Carrington JC (1990) Nuclear transport of plant potyviral proteins. Plant Cell 2:987–998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  CAS  PubMed  Google Scholar 

  33. Lee LY, Fang MJ, Kuang LY, Gelvin SB (2008) Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods 4:24

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gehl C, Waadt R, Kudla J, Mendel RR, Hansch R (2009) New GATEWAY vectors for high throughput analyses of protein-protein interactions by bimolecular fluorescence complementation. Mol Plant 2:1051–1058

    Article  CAS  PubMed  Google Scholar 

  35. Tanaka Y, Kimura T, Hikino K, Goto S, Nishimura M, Mano S, Nakagawa T (2012) Gateway vectors for plant genetic engineering: overview of plant vectors, application for bimolecular fluorescence complementation (BiFC) and multigene construction. In: Barrera-Saldaña HA (ed) Genetic engineering—basics, new applications and responsibilities. InTech Europe, Rijeka, Croatia, pp 35–58. http://www.intechopen.com/contact.html

  36. Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  CAS  PubMed  Google Scholar 

  37. Dangl JL, Hauffe KD, Lipphardt S, Hahlbrock K, Scheel D (1987) Parsley protoplasts retain differential responsiveness to u.v. light and fungal elicitor. EMBO J 6:2551–2556

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Schweighofer A, Ayatollahi Z, Meskiene I (2009) Phosphatase activities analyzed by in vivo expressions. Methods Mol Biol 479:247–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dierk Scheel and Thomas Kroj for sharing the protoplast isolation method for parsley and Andrej Belokurov for cultivation of suspension culture cells. This work has received funding from the Lithuanian-Swiss cooperation program to reduce economic and social disparities within the enlarged European Union under project agreement No CH-3-Ĺ MM-01/10 and from the Austrian Science Fund (FWF) I255, L687 and W1220-B09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alois Schweighofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schweighofer, A., Shubchynskyy, V., Kazanaviciute, V., Djamei, A., Meskiene, I. (2014). Bimolecular Fluorescent Complementation (BiFC) by MAP Kinases and MAPK Phosphatases. In: Komis, G., Ĺ amaj, J. (eds) Plant MAP Kinases. Methods in Molecular Biology, vol 1171. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0922-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0922-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0921-6

  • Online ISBN: 978-1-4939-0922-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics