Skip to main content

Pseudogene-Derived Endogenous siRNAs and Their Function

  • Protocol
  • First Online:
Pseudogenes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1167))

Abstract

Pseudogenes were once considered genomic fossils, but recent studies indicate that they may function as gene regulators through the generation of endogenous small interfering RNAs (esiRNAs), antisense RNAs, and decoys for microRNAs. In this review, we summarize pseudogene study methods, emphasizing relevant publicly available resources, and we describe a systematic pipeline to identify pseudogene-derived esiRNAs and their targets, which can lead to a deeper understanding of pseudogene function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacq C, Miller JR, Brownlee GG (1977) A pseudogene structure in 5S DNA of Xenopus laevis. Cell 12(1):109–120

    Article  CAS  PubMed  Google Scholar 

  2. Balakirev ES, Ayala FJ (2003) Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet 37:123–151. doi:10.1146/annurev.genet.37.040103.103949

    Article  CAS  PubMed  Google Scholar 

  3. Poliseno L (2012) Pseudogenes: newly discovered players in human cancer. Sci Signal 5(242):re5. doi:10.1126/scisignal.2002858

    Article  PubMed  Google Scholar 

  4. Tutar Y (2012) Pseudogenes. Comp Funct Genomics 2012:424526. doi:10.1155/2012/424526

    Article  PubMed Central  PubMed  Google Scholar 

  5. Muro EM, Mah N, Andrade-Navarro MA (2011) Functional evidence of post-transcriptional regulation by pseudogenes. Biochimie 93(11):1916–1921. doi:10.1016/j.biochi.2011.07.024

    Article  CAS  PubMed  Google Scholar 

  6. Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, Carter DR (2011) Pseudogenes: pseudo-functional or key regulators in health and disease? RNA 17(5):792–798. doi:10.1261/rna.2658311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Mighell AJ, Smith NR, Robinson PA, Markham AF (2000) Vertebrate pseudogenes. FEBS Lett 468(2–3):109–114

    Article  CAS  PubMed  Google Scholar 

  8. Zhang ZD, Frankish A, Hunt T, Harrow J, Gerstein M (2010) Identification and analysis of unitary pseudogenes: historic and contemporary gene losses in humans and other primates. Genome Biol 11(3):R26. doi:10.1186/gb-2010-11-3-r26

    Article  PubMed Central  PubMed  Google Scholar 

  9. Harrison PM, Gerstein M (2002) Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J Mol Biol 318(5):1155–1174

    Article  CAS  PubMed  Google Scholar 

  10. Marques AC, Tan J, Lee S, Kong L, Heger A, Ponting CP (2012) Evidence for conserved post-transcriptional roles of unitary pseudogenes and for frequent bifunctionality of mRNAs. Genome Biol 13(11):R102. doi:10.1186/gb-2012-13-11-r102

    Article  PubMed Central  PubMed  Google Scholar 

  11. Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, Harte R, Balasubramanian S, Tanzer A, Diekhans M, Reymond A, Hubbard TJ, Harrow J, Gerstein MB (2012) The GENCODE pseudogene resource. Genome Biol 13(9):R51. doi:10.1186/gb-2012-13-9-r51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Costa V, Esposito R, Aprile M, Ciccodicola A (2012) Non-coding RNA and pseudogenes in neurodegenerative diseases: “The (un)Usual Suspects”. Front Genet 3:231. doi:10.3389/fgene.2012.00231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lee HH, Niu DM, Lin RW, Chan P, Lin CY (2002) Structural analysis of the chimeric CYP21P/CYP21 gene in steroid 21-hydroxylase deficiency. J Hum Genet 47(10):517–522. doi:10.1007/s100380200077

    Article  CAS  PubMed  Google Scholar 

  14. Chang SF, Cheng CL (1998) The suppression effect of DNA sequences within the C4A region on the transcription activity of human CYP21. Endocr Res 24(3–4):625–630

    Article  CAS  PubMed  Google Scholar 

  15. Troyanovsky SM, Leube RE (1994) Activation of the silent human cytokeratin 17 pseudogene-promoter region by cryptic enhancer elements of the cytokeratin 17 gene. Eur J Biochem 225(1):61–69

    Article  CAS  PubMed  Google Scholar 

  16. Rogers MA, Winter H, Langbein L, Bleiler R, Schweizer J (2004) The human type I keratin gene family: characterization of new hair follicle specific members and evaluation of the chromosome 17q21.2 gene domain. Differentiation 72(9–10):527–540. doi:10.1111/j.1432-0436.2004.07209006.x

    Article  CAS  PubMed  Google Scholar 

  17. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358. doi:10.1016/j.cell.2011.07.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22(20):2773–2785. doi:10.1101/gad.1705308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453(7194):534–538. doi:10.1038/nature06904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453(7194):539–543. doi:10.1038/nature06908

    Article  CAS  PubMed  Google Scholar 

  21. Gu W, Shirayama M, Conte D Jr, Vasale J, Batista PJ, Claycomb JM, Moresco JJ, Youngman EM, Keys J, Stoltz MJ, Chen CC, Chaves DA, Duan S, Kasschau KD, Fahlgren N, Yates JR 3rd, Mitani S, Carrington JC, Mello CC (2009) Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol Cell 36(2):231–244. doi:10.1016/j.molcel.2009.09.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zhong SH, Liu JZ, Jin H, Lin L, Li Q, Chen Y, Yuan YX, Wang ZY, Huang H, Qi YJ, Chen XY, Vaucheret H, Chory J, Li J, He ZH (2013) Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis. Proc Natl Acad Sci U S A 110(22):9171–9176. doi:10.1073/pnas.1219655110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Shi Z, Montgomery TA, Qi Y, Ruvkun G (2013) High-throughput sequencing reveals extraordinary fluidity of miRNA, piRNA, and siRNA pathways in nematodes. Genome Res 23(3):497–508. doi:10.1101/gr.149112.112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chan WL, Yuo CY, Yang WK, Hung SY, Chang YS, Chiu CC, Yeh KT, Huang HD, Chang JG (2013) Transcribed pseudogene psiPPM1K generates endogenous siRNA to suppress oncogenic cell growth in hepatocellular carcinoma. Nucleic Acids Res 41(6):3734–3747. doi:10.1093/nar/gkt047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vanin EF, Goldberg GI, Tucker PW, Smithies O (1980) A mouse alpha-globin-related pseudogene lacking intervening sequences. Nature 286(5770):222–226

    Article  CAS  PubMed  Google Scholar 

  26. Korneev SA, Park JH, O’Shea M (1999) Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. J Neurosci 19(18):7711–7720

    CAS  PubMed  Google Scholar 

  27. Wen YZ, Zheng LL, Liao JY, Wang MH, Wei Y, Guo XM, Qu LH, Ayala FJ, Lun ZR (2011) Pseudogene-derived small interference RNAs regulate gene expression in African Trypanosoma brucei. Proc Natl Acad Sci U S A 108(20):8345–8350. doi:10.1073/pnas.1103894108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Guo X, Zhang Z, Gerstein MB, Zheng D (2009) Small RNAs originated from pseudogenes: cis- or trans-acting? PLoS Comput Biol 5(7):e1000449. doi:10.1371/journal.pcbi.1000449

    Article  PubMed Central  PubMed  Google Scholar 

  29. Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5(3):e57. doi:10.1371/journal.pbio.0050057

    Article  PubMed Central  PubMed  Google Scholar 

  30. Pontier DB, Gribnau J (2011) Xist regulation and function explored. Hum Genet 130(2):223–236. doi:10.1007/s00439-011-1008-7

    Article  PubMed Central  PubMed  Google Scholar 

  31. Duret L, Chureau C, Samain S, Weissenbach J, Avner P (2006) The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312(5780):1653–1655. doi:10.1126/science.1126316

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Harrison P, Gerstein M (2002) Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome. Genome Res 12(10):1466–1482. doi:10.1101/gr.331902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zhang Z, Harrison PM, Liu Y, Gerstein M (2003) Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13(12):2541–2558, doi:10.1101/gr.142900313/12/2541 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zhang Z, Gerstein M (2004) Large-scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev 14(4):328–335. doi:10.1016/j.gde.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Z, Carriero N, Gerstein M (2004) Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet 20(2):62–67. doi:10.1016/j.tig.2003.12.005

    Article  PubMed  Google Scholar 

  36. Zhang Z, Carriero N, Zheng D, Karro J, Harrison PM, Gerstein M (2006) PseudoPipe: an automated pseudogene identification pipeline. Bioinformatics 22(12):1437–1439. doi:10.1093/bioinformatics/btl116

    Article  CAS  PubMed  Google Scholar 

  37. Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7 Suppl 1:S10.11–S10.12. doi:10.1186/gb-2006-7-s1-s10

  38. Bischof JM, Chiang AP, Scheetz TE, Stone EM, Casavant TL, Sheffield VC, Braun TA (2006) Genome-wide identification of pseudogenes capable of disease-causing gene conversion. Hum Mutat 27(6):545–552. doi:10.1002/humu.20335

    Article  CAS  PubMed  Google Scholar 

  39. Zheng D, Gerstein MB (2006) A computational approach for identifying pseudogenes in the ENCODE regions. Genome Biol 7 Suppl 1:S13.11–S13.10. doi:10.1186/gb-2006-7-s1-s13

  40. Zheng D, Frankish A, Baertsch R, Kapranov P, Reymond A, Choo SW, Lu Y, Denoeud F, Antonarakis SE, Snyder M, Ruan Y, Wei CL, Gingeras TR, Guigo R, Harrow J, Gerstein MB (2007) Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution. Genome Res 17(6):839–851. doi:10.1101/gr.5586307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lu YT, Haussler D (2006) PseudoFinder: a genome-wide pseudogene finding method. Paper presented at the 2006 ASHG Annual Meeting, New Orleans, LA, October 9–13, 2006

    Google Scholar 

  42. Torrents D, Suyama M, Zdobnov E, Bork P (2003) A genome-wide survey of human pseudogenes. Genome Res 13(12):2559–2567, doi:10.1101/gr.145550313/12/2559 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Karro JE, Yan Y, Zheng D, Zhang Z, Carriero N, Cayting P, Harrrison P, Gerstein M (2007) Pseudogene.org: a comprehensive database and comparison platform for pseudogene annotation. Nucleic Acids Res 35(Database issue):D55–D60. doi:10.1093/nar/gkl851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Garcia-Giron C, Gordon L, Hourlier T, Hunt S, Juettemann T, Kahari AK, Keenan S, Komorowska M, Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sheppard D, Sobral D, Taylor K, Thormann A, Trevanion S, White S, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Harrow J, Herrero J, Hubbard TJ, Johnson N, Kinsella R, Parker A, Spudich G, Yates A, Zadissa A, Searle SM (2013) Ensembl 2013. Nucleic Acids Res 41(Database issue):D48–D55. doi:10.1093/nar/gks1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, Wong M, Sloan CA, Rosenbloom KR, Roe G, Rhead B, Raney BJ, Pohl A, Malladi VS, Li CH, Lee BT, Learned K, Kirkup V, Hsu F, Heitner S, Harte RA, Haeussler M, Guruvadoo L, Goldman M, Giardine BM, Fujita PA, Dreszer TR, Diekhans M, Cline MS, Clawson H, Barber GP, Haussler D, Kent WJ (2013) The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res 41(Database issue):D64–D69. doi:10.1093/nar/gks1048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Chan WL, Yang WK, Huang HD, Chang JG (2013) pseudoMap: an innovative and comprehensive resource for identification of siRNA-mediated mechanisms in human transcribed pseudogenes. Database (Oxford) 2013:bat001. doi:10.1093/database/bat001

    Article  Google Scholar 

  47. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157. doi:10.1093/nar/gkq1027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Mituyama T, Yamada K, Hattori E, Okida H, Ono Y, Terai G, Yoshizawa A, Komori T, Asai K (2009) The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Res 37(Database issue):D89–D92. doi:10.1093/nar/gkn805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Barrett T, Edgar R (2006) Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol 411:352–369. doi:10.1016/S0076-6879(06)11019-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, Eaves CJ, Marra MA (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18(4):610–621. doi:10.1101/gr.7179508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB, Flynn RA, Young RA, Sharp PA (2008) Divergent transcription from active promoters. Science 322(5909):1849–1851. doi:10.1126/science.1162253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Yeo GW, Xu X, Liang TY, Muotri AR, Carson CT, Coufal NG, Gage FH (2007) Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLoS Comput Biol 3(10):1951–1967. doi:10.1371/journal.pcbi.0030196

    Article  CAS  PubMed  Google Scholar 

  53. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, Qin L, Wu X, Zheng Y, Yang Y, Tian W, Zhang Q, Wang C, Zhuang SM, Zheng L, Liang A, Tao W, Cao X (2011) Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 19(2):232–243. doi:10.1016/j.ccr.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  54. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. doi:10.1101/gr.082701.108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105. doi:10.1016/j.molcel.2007.06.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. doi:10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  58. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11):e363. doi:10.1371/journal.pbio.0020363

    Article  PubMed Central  PubMed  Google Scholar 

  59. Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(Web Server issue):451–454. doi:10.1093/nar/gkl243

    Article  Google Scholar 

  60. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  61. Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, Goto S, Kanehisa M (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36(Web Server issue):W423–W426. doi:10.1093/nar/gkn282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  63. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301):1033–1038. doi:10.1038/nature09144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Jalali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V (2013) Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One 8(2):e53823, doi:10.1371/journal.pone.0053823PONE-D-12-06014 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Reczko M, Maragkakis M, Dalamagas TM, Hatzigeorgiou AG (2013) DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res 41(Database issue):D239–D245. doi:10.1093/nar/gks1246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Hsu JB, Chiu CM, Hsu SD, Huang WY, Chien CH, Lee TY, Huang HD (2011) miRTar: an integrated system for identifying miRNA-target interactions in human. BMC Bioinformatics 12:300. doi:10.1186/1471-2105-12-300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the editor for her extensive comments that helped us to improve this manuscript. This work was supported by Asia University and a grant from the National Science Council of the Republic of China (NSC99-2320-B-037-006-MY3 to J.G.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Gowth Chang M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chan, WL., Chang, JG. (2014). Pseudogene-Derived Endogenous siRNAs and Their Function. In: Poliseno, L. (eds) Pseudogenes. Methods in Molecular Biology, vol 1167. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0835-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0835-6_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0834-9

  • Online ISBN: 978-1-4939-0835-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics