Skip to main content

AthaMap Web Tools for the Analysis of Transcriptional and Posttranscriptional Regulation of Gene Expression in Arabidopsis thaliana

  • Protocol
  • First Online:
Plant Circadian Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1158))

Abstract

The AthaMap database provides a map of verified and predicted transcription factor (TF) and small RNA-binding sites for the A. thaliana genome. The database can be used for bioinformatic predictions of putative regulatory sites. Several online web tools are available that address specific questions. Starting with the identification of transcription factor-binding sites (TFBS) in any gene of interest, colocalizing TFBS can be identified as well as common TFBS in a set of user-provided genes. Furthermore, genes can be identified that are potentially targeted by specific transcription factors or small inhibitory RNAs. This chapter provides detailed information on how each AthaMap web tool can be used online. Examples on how this database is used to address questions in circadian and diurnal regulation are given. Furthermore, complementary databases and databases that go beyond questions addressed with AthaMap are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steffens NO, Galuschka C, Schindler M, Bülow L, Hehl R (2004) AthaMap: an online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome. Nucleic Acids Res 32(1):D368–D372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hertz GZ, Stormo GD (1999) Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15(7–8):563–577

    Article  CAS  PubMed  Google Scholar 

  3. Steffens NO, Galuschka C, Schindler M, Bülow L, Hehl R (2005) AthaMap web tools for database-assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana. Nucleic Acids Res 33:W397–W402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bülow L, Steffens NO, Galuschka C, Schindler M, Hehl R (2006) AthaMap: from in silico data to real transcription factor binding sites. Silico Biol 6(3):243–252

    Google Scholar 

  5. Bülow L, Engelmann S, Schindler M, Hehl R (2009) AthaMap, integrating transcriptional and post-transcriptional data. Nucleic Acids Res 37(Database issue):D983–D986

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bülow L, Bolívar JC, Ruhe J, Brill Y, Hehl R (2012) ‘MicroRNA Targets’, A new AthaMap web-tool for genome-wide identification of miRNA targets in Arabidopsis thaliana. BioData Min 5:7

    Article  PubMed Central  PubMed  Google Scholar 

  7. Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ (2005) Elucidation of the small RNA component of the transcriptome. Science 309(5740):1567–1569

    Article  CAS  PubMed  Google Scholar 

  8. Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127(3):565–577

    Article  CAS  PubMed  Google Scholar 

  9. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20(24):3407–3425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5(3):e57

    Article  PubMed Central  PubMed  Google Scholar 

  11. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2(2):e219

    Article  PubMed Central  PubMed  Google Scholar 

  12. Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC (2007) Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19(3):926–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(Suppl 2):W155–W159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Quadrana L, Almeida J, Otaiza SN, Duffy T, Correa da Silva JV, de Godoy F, Asis R, Bermudez L, Fernie AR, Carrari F, Rossi M (2013) Transcriptional regulation of tocopherol biosynthesis in tomato. Plant Mol Biol 81(3):309–325

    Article  CAS  PubMed  Google Scholar 

  16. Donner TJ, Scarpella E (2013) Transcriptional control of early vein expression of CYCA2; 1 and CYCA2;4 in Arabidopsis leaves. Mech Dev 130(1):14–24

    Article  CAS  PubMed  Google Scholar 

  17. Barah P, Winge P, Kusnierczyk A, Tran DH, Bones AM (2013) Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection. PLoS One 8(3):e58987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, Hazen SP, Shen R, Priest HD, Sullivan CM, Givan SA, Yanovsky M, Hong F, Kay SA, Chory J (2008) Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 4(2):e14

    Article  PubMed Central  PubMed  Google Scholar 

  19. Priest HD, Filichkin SA, Mockler TC (2009) cis-Regulatory elements in plant cell signaling. Curr Opin Plant Biol 12(5):643–649

    Article  CAS  PubMed  Google Scholar 

  20. Marin-de la Rosa N, Alabadi D, Blazquez MA, Arana MV (2011) Integrating circadian and gibberellin signaling in Arabidopsis: possible links between the circadian clock and the AtGID1 transcription. Plant Signal Behav 6(9):1411–1413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Nagel DH, Kay SA (2012) Complexity in the wiring and regulation of plant circadian networks. Curr Biol 22(16):R648–R657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA (2005) LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci U S A 102(29):10387–10392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Giraud E, Ng S, Carrie C, Duncan O, Low J, Lee CP, Van Aken O, Millar AH, Murcha M, Whelan J (2010) TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. Plant Cell 22(12):3921–3934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kosugi S, Ohashi Y (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30(3):337–348

    Article  CAS  PubMed  Google Scholar 

  25. Viola IL, Reinheimer R, Ripoll R, Manassero NG, Gonzalez DH (2012) Determinants of the DNA binding specificity of class I and class II TCP transcription factors. J Biol Chem 287(1):347–356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Galuschka C, Schindler M, Bülow L, Hehl R (2007) AthaMap web-tools for the analysis and identification of co-regulated genes. Nucleic Acids Res 35:D857–D862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bülow L, Brill Y, Hehl R (2010) AthaMap-assisted transcription factor target gene identification in Arabidopsis thaliana. Database (Oxford) 2010:baq034

    Article  Google Scholar 

  28. Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36(Database issue):D1009–D1014

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Mewes HW, Ruepp A, Theis F, Rattei T, Walter M, Frishman D, Suhre K, Spannagl M, Mayer KF, Stumpflen V, Antonov A (2010) MIPS: curated databases and comprehensive secondary data resources in 2010. Nucleic Acids Res 39(Database issue):D220–D224

    PubMed Central  PubMed  Google Scholar 

  30. Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31(1):114–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hehl R, Bülow L (2008) Internet resources for gene expression analysis in Arabidopsis thaliana. Curr Genomics 9:375–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow A, Steinhauser D, Persson S, Provart NJ (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32(12):1633–1651

    Article  CAS  PubMed  Google Scholar 

  33. Brady SM, Provart NJ (2009) Web-queryable large-scale data sets for hypothesis generation in plant biology. Plant Cell 21(4):1034–1051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mejia-Guerra MK, Pomeranz M, Morohashi K, Grotewold E (2012) From plant gene regulatory grids to network dynamics. Biochim Biophys Acta 1819(5):454–465

    Article  CAS  PubMed  Google Scholar 

  35. Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis Gene Regulatory Information Server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinforma 4(1):25

    Article  Google Scholar 

  36. O’Connor TR, Dyreson C, Wyrick JJ (2005) Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics 21(24):4411–4413

    Article  PubMed  Google Scholar 

  37. Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M, Shibata D, Saito K, Ohta H (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35(Database issue):D863–D869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Chen Y-A, Wen Y-C, Chang W-C (2012) AtPAN: an integrated system for reconstructing transcriptional regulatory networks in Arabidopsis thaliana. BMC Genomics 13:85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Rombauts S, Dehais P, Van Montagu M, Rouze P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27(1):295–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, Münch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31(1):374–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ding J, Hu H, Li X (2012) Thousands of cis-regulatory sequence combinations are shared by Arabidopsis and poplar. Plant Physiol 158(1):145–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Perez-Rodriguez P, Riano-Pachon DM, Correa LG, Rensing SA, Kersten B, Mueller-Roeber B (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38(Database issue):D822–D827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Bailey TL (2008) Discovering sequence motifs. Methods Mol Biol 452:231–251

    Article  CAS  PubMed  Google Scholar 

  45. Koschmann J, Machens F, Becker M, Niemeyer J, Schulze J, Bülow L, Stahl DJ, Hehl R (2012) Integration of bioinformatics and synthetic promoters leads to the discovery of novel elicitor-responsive cis-regulatory sequences in Arabidopsis. Plant Physiol 160:178–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. van Helden J (2003) Regulatory sequence analysis tools. Nucleic Acids Res 31(13):3593–3596

    Article  PubMed Central  PubMed  Google Scholar 

  47. Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, van Helden J (2011) RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res 39(Web Server issue):W86–W91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The Botany Array Resource: e-northerns, expression angling, and promoter analyses. Plant J 43(1):153–163

    Article  CAS  PubMed  Google Scholar 

  49. Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3:21–29

    CAS  PubMed  Google Scholar 

  50. Roth FP, Hughes JD, Estep PW, Church GM (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16(10):939–945

    Article  CAS  PubMed  Google Scholar 

  51. GuhaThakurta D, Stormo GD (2001) Identifying target sites for cooperatively binding factors. Bioinformatics 17(7):608–621

    Article  CAS  PubMed  Google Scholar 

  52. Liu X, Brutlag DL, Liu JS (2001) BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput, pp 127–138

    Google Scholar 

  53. Eskin E, Pevzner PA (2002) Finding composite regulatory patterns in DNA sequences. Bioinformatics 18(Suppl 1):S354–S363

    Article  PubMed  Google Scholar 

  54. Jensen ST, Liu JS (2004) BioOptimizer: a Bayesian scoring function approach to motif discovery. Bioinformatics 20(10):1557–1564

    Article  CAS  PubMed  Google Scholar 

  55. Che D, Jensen S, Cai L, Liu JS (2005) BEST: binding-site estimation suite of tools. Bioinformatics 21(12):2909–2911

    Article  CAS  PubMed  Google Scholar 

  56. Mahony S, Benos PV (2007) STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res 35(Web Server issue):W253–W258

    Article  PubMed Central  PubMed  Google Scholar 

  57. Yan T, Yoo D, Berardini TZ, Mueller LA, Weems DC, Weng S, Cherry JM, Rhee SY (2005) PatMatch: a program for finding patterns in peptide and nucleotide sequences. Nucleic Acids Res 33(Web Server issue):W262–W266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Xie F, Zhang B (2010) Target-align: a tool for plant microRNA target identification. Bioinformatics 26(23):3002–3003

    Article  CAS  PubMed  Google Scholar 

  59. Backman TW, Sullivan CM, Cumbie JS, Miller ZA, Chapman EJ, Fahlgren N, Givan SA, Carrington JC, Kasschau KD (2008) Update of ASRP: the Arabidopsis small RNA project database. Nucleic Acids Res 36(Database issue):D982–D985

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Meyers BC, Vu TH, Tej SS, Ghazal H, Matvienko M, Agrawal V, Ning J, Haudenschild CD (2004) Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol 22(8):1006–1011

    Article  CAS  PubMed  Google Scholar 

  61. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2(1):e718

    Article  PubMed Central  PubMed  Google Scholar 

  62. Dupl’akova N, Renak D, Hovanec P, Honysova B, Twell D, Honys D (2007) Arabidopsis Gene Family Profiler (aGFP) – user-oriented transcriptomic database with easy-to-use graphic interface. BMC Plant Biol 7(39):39

    Article  PubMed Central  PubMed  Google Scholar 

  63. Baginsky S, Gruissem W (2006) Arabidopsis thaliana proteomics: from proteome to genome. J Exp Bot 57(7):1485–1491

    Article  CAS  PubMed  Google Scholar 

  64. Kawaguchi R, Bailey-Serres J (2005) mRNA sequence features that contribute to translational regulation in Arabidopsis. Nucleic Acids Res 33(3):955–965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Dolan L (2001) Root patterning: SHORT ROOT on the move. Curr Biol 11(23):R983–R985

    Article  CAS  PubMed  Google Scholar 

  66. Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH (2007) SUBA: the Arabidopsis subcellular database. Nucleic Acids Res 35(Database issue):D213–D218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131(1):16–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320(5878):938–941

    Article  CAS  PubMed  Google Scholar 

  69. Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J (2007) The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harbor Symp Quantitat Biol 72:353–363

    Article  CAS  Google Scholar 

  70. Staiger D, Shin J, Johansson M, Davis SJ (2013) The circadian clock goes genomic. Genome Biol 14(6):208

    Article  PubMed  Google Scholar 

  71. The International Arabidopsis Informatics Consortium (2012) Taking the next step: building an Arabidopsis information portal. Plant Cell 24(6):2248–2256

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work on the AthaMap database was supported by grants from the German Federal Ministry for Education and Research (BMBF). We would like to thank Martin Schindler, Nils Ole Steffens, Claudia Galuschka, Yuri Brill, Julio C. Bolívar, Jonas Ruhe, and Stefan Engelmann for their work on the AthaMap database and web tools. Currently, AthaMap is being curated by Artyom Romanov. We also want to thank Edgar Wingender for stimulating our interest in bioinformatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Hehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hehl, R., Bülow, L. (2014). AthaMap Web Tools for the Analysis of Transcriptional and Posttranscriptional Regulation of Gene Expression in Arabidopsis thaliana . In: Staiger, D. (eds) Plant Circadian Networks. Methods in Molecular Biology, vol 1158. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0700-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0700-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0699-4

  • Online ISBN: 978-1-4939-0700-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics