Skip to main content

In Vitro Methods for Cardiotoxicity Testing

  • Protocol
  • First Online:
In Vitro Toxicology Systems

Abstract

Drug-induced cardiotoxicity resulted in withdrawal of cardiovascular as well as non-cardiovascular drugs from the market. This revealed the lacunae of preclinical safety evaluation and forced the International Conference on Harmonization to develop stringent guidelines for preclinical safety evaluation and to include cardiotoxicity testing as a part of repeated dose toxicity studies. Still there is a gap of species variation in preclinical-to-clinical translation of drug safety profile. European Centre for the Validation of Alternative Methods is engaged in bridging this gap. This chapter reviews the established test methods on the in vitro cardiotoxicity testing as per the guidelines as well as the upcoming alternative methods based on human embryonic or human-induced pluripotent stem cell-derived cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hey JA, del Prado M, Kreutner W, Egan RW (1996) Cardiotoxic and drug interaction profile of the second generation antihistamines ebastine and terfenadine in an experimental animal model of torsade de pointes. Arzneimittelforschung 46(2):159–163

    CAS  PubMed  Google Scholar 

  2. Hey JA, del Prado M, Sherwood J, Kreutner W, Egan RW (1996) Comparative analysis of the cardiotoxicity proclivities of second generation antihistamines in an experimental model predictive of adverse clinical ECG effects. Arzneimittelforschung 46(2):153–158

    CAS  PubMed  Google Scholar 

  3. Kamisako T, Adachi Y, Nakagawa H, Yamamoto T (1995) Torsades de pointes associated with terfenadine in a case of liver cirrhosis and hepatocellular carcinoma. Intern Med 34(2):92–95

    CAS  PubMed  Google Scholar 

  4. Patmore L, Fraser S, Mair D, Templeton A (2000) Effects of sparfloxacin, grepafloxacin, moxifloxacin, and ciprofloxacin on cardiac action potential duration. Eur J Pharmacol 406(3):449–452

    CAS  PubMed  Google Scholar 

  5. Meyer T, Sartipy P, Blind F, LeIsgen C, Guenther E (2007) New cell models and assays in cardiac safety profiling. Expert Opin Drug Metab Toxicol 3(4):507–517

    CAS  PubMed  Google Scholar 

  6. Paakkari I (2002) Cardiotoxicity of new antihistamines and cisapride. Toxicol Lett 127 (1–3):279–284

    CAS  PubMed  Google Scholar 

  7. Stummann TC, Beilmann M, Duker G et al (2009) Report and recommendations of the workshop of the European Centre for the Validation of Alternative Methods for Drug-Induced Cardiotoxicity. Cardiovasc Toxicol 9(3):107–125

    PubMed  Google Scholar 

  8. Chen MX, Sandow SL, Doceul V et al (2007) Improved functional expression of recombinant human ether-a-go-go (hERG) K(+) channels by cultivation at reduced temperature. BMC Biotechnol 7:93

    PubMed Central  PubMed  Google Scholar 

  9. Duff HJ, Feng ZP, Sheldon RS (1995) High- and low-affinity sites for [H-3] dofetilide binding to guinea-pig myocytes. Circ Res 77(4):718–725

    CAS  PubMed  Google Scholar 

  10. Wang L, Feng ZP, Kondo CS, Sheldon RS, Duff HJ (1996) Developmental changes in the delayed rectifier K+ channels in mouse heart. Circ Res 79(1):79–85

    CAS  PubMed  Google Scholar 

  11. Huang XP, Mangano T, Hufeisen S, Setola V, Roth BL (2010) Identification of human Ether-à-go-go related gene modulators by three screening platforms in an academic drug-discovery setting. Assay Drug Dev Technol 8(6):727–742

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Singleton DH, Boyd H, Steidl-Nichols JV et al (2007) Fluorescently labeled analogues of dofetilide as high-affinity fluorescence polarization ligands for the human ether-a-go-go-related gene (hERG) channel. J Med Chem 50(13):2931–2941

    CAS  PubMed  Google Scholar 

  13. Finlayson K, Turnbull L, January CT, Sharkey J, Kelly JS (2001) [H-3]dofetilide binding to HERG transfected membranes: a potential high throughput preclinical screen. Eur J Pharmacol 430(1):147–148

    CAS  PubMed  Google Scholar 

  14. Chiu PJS, Marcoe KF, Bounds SE et al (2004) Validation of a [H-3]astemizole binding assay in HEK293 cells expressing HERG K+ channels. J Pharmacol Sci 95(3):311–319

    CAS  PubMed  Google Scholar 

  15. Schmalhofer WA, Swensen AM, Thomas BS et al (2010) A pharmacologically validated, high-capacity, functional thallium flux assay for the human Ether-a-go-go related gene potassium channel. Assay Drug Dev Technol 8(6):714–726

    CAS  PubMed  Google Scholar 

  16. Li QY, Rottlander M, Xu MK et al (2011) Identification of novel KCNQ4 openers by a high-throughput fluorescence-based thallium flux assay. Anal Biochem 418(1):66–72

    CAS  PubMed  Google Scholar 

  17. Bridal TR, Margulis M, Wang X, Donio M, Sorota S (2010) Comparison of human Ether-à-go-go related gene screening assays based on IonWorks Quattro and thallium flux. Assay Drug Dev Technol 8(6):755–765

    CAS  PubMed  Google Scholar 

  18. Trivedi S, Dekermendjian K, Julien R et al (2008) Cellular HTS assays for pharmacological characterization of Na(V)1.7 modulators. Assay Drug Dev Technol 6(2):167–179

    CAS  PubMed  Google Scholar 

  19. Chaudhary KW, O’Neal JM, Mo ZL, Fermini B, Gallavan RH, Bahinski A (2006) Evaluation of the rubidium efflux assay for preclinical identification of hERG blockade. Assay Drug Dev Technol 4(1):73–82

    CAS  PubMed  Google Scholar 

  20. Tang WM, Kang JS, Wu XY et al (2001) Development and evaluation of high throughput functional assay methods for hERG potassium channel. J Biomol Screen 6(5):325–331

    CAS  PubMed  Google Scholar 

  21. Rezazadeh S, Hesketh JC, Fedida D (2004) Rb+ flux through hERG channels affects the potency of channel blocking drugs: correlation with data obtained using a high-throughput Rb+ efflux assay. J Biomol Screen 9(7): 588–597

    CAS  PubMed  Google Scholar 

  22. Sorota S, Zhang XS, Margulis M, Tucker K, Priestley T (2005) Characterization of a hERG screen using the IonWorks HT: comparison to a hERG rubidium efflux screen. Assay Drug Dev Technol 3(1):47–57

    CAS  PubMed  Google Scholar 

  23. Gill S, Gill R, Sen Lee S et al (2003) Flux assays in high throughput screening of ion channels in drug discovery. Assay Drug Dev Technol 1(5):709–717

    CAS  PubMed  Google Scholar 

  24. Scott CW, Wilkins DE, Trivedi S, Crankshaw DJ (2003) A medium-throughput functional assay of KCNQ2 potassium channels using rubidium efflux and atomic absorption spectrometry. Anal Biochem 319(2):251–257

    CAS  PubMed  Google Scholar 

  25. Dorn A, Hermann F, Ebneth A et al (2005) Evaluation of a high-throughput fluorescence assay method for hERG potassium channel inhibition. J Biomol Screen 10(4):339–347

    CAS  PubMed  Google Scholar 

  26. Titus SA, Beacham D, Shahane SA et al (2009) A new homogeneous high-throughput screening assay for profiling compound activity on the human Ether-à-go-go-related gene channel. Anal Biochem 394(1):30–38

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Zhao J, Wang QX, Xu J, Zhao J, Liu G, Peng SQ (2011) Cyclovirobuxine D inhibits the currents of HERG potassium channels stably expressed in HEK293 cells. Eur J Pharmacol 660(2–3):259–267

    CAS  PubMed  Google Scholar 

  28. Zhao J, Lian Y, Lu CF, Jing L, Yuan HT, Peng SQ (2012) Inhibitory effects of a bisbenzylisoquinline alkaloid dauricine on HERG potassium channels. J Ethnopharmacol 141(2):685–691

    CAS  PubMed  Google Scholar 

  29. Amoros I, Jimenez-Jaimez J, Tercedor L et al (2011) Functional effects of a missense mutation in HERG associated with type 2 long QT syndrome. Heart Rhythm 8(3):463–470

    PubMed  Google Scholar 

  30. Lee SH, Sung MJ, Hahn SJ et al (2012) Blockade of human HERG K+ channels by rosiglitazone, an antidiabetic drug. Arch Pharm Res 35(9):1655–1664

    CAS  PubMed  Google Scholar 

  31. Lee SH, Hahn SJ, Min G et al (2011) Inhibitory actions of HERG currents by the immunosuppressant drug cyclosporin a. Korean J Physiol Pharmacol 15(5):291–297

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Watson KJ, Gorczyca WP, Umland J et al (2011) Pharmacokinetic-pharmacodynamic modelling of the effect of Moxifloxacin on QTc prolongation in telemetered cynomolgus monkeys. J Pharmacol Toxicol Methods 63(3):304–313

    CAS  PubMed  Google Scholar 

  33. Bebarova M (2012) Advances in patch clamp technique: towards higher quality and quantity. Gen Physiol Biophys 31(2):131–140

    CAS  PubMed  Google Scholar 

  34. Brown AM (2009) High throughput functional screening of an ion channel library for drug safety and efficacy. Eur Biophys J Biophys Lett 38(3):273–278

    CAS  Google Scholar 

  35. Bridgland-Taylor MH, Hargreaves AC, Easter A et al (2006) Optimisation and validation of a medium-throughput electrophysiology-based hERG assay using IonWorks HT. J Pharmacol Toxicol Methods 54(2):189–199

    CAS  PubMed  Google Scholar 

  36. Guo L, Guthrie H (2005) Automated electrophysiology in the preclinical evaluation of drugs for potential QT prolongation. J Pharmacol Toxicol Methods 52(1):123–135

    CAS  PubMed  Google Scholar 

  37. Scheel O, Himmel H, Rascher-Eggstein G, Knott T (2011) Introduction of a modular automated voltage-clamp platform and its correlation with manual human Ether-à-go-go related gene voltage-clamp data. Assay Drug Dev Technol 9(6):600–607

    CAS  PubMed  Google Scholar 

  38. Ma JY, Guo L, Fiene SJ et al (2011) High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol 301(5):H2006–H2017

    CAS  PubMed  Google Scholar 

  39. Xia MH, Shahane SA, Huang RL et al (2011) Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels. Toxicol Appl Pharmacol 252(3):250–258

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Golden AP, Li NZ, Chen Q et al (2011) IonFlux: a microfluidic patch clamp system evaluated with human Ether-à-go-go related gene channel physiology and pharmacology. Assay Drug Dev Technol 9(6):608–619

    CAS  PubMed  Google Scholar 

  41. Vasilyev D, Merrill T, Iwanow A, Dunlop J, Bowlby M (2006) A novel method for patch-clamp automation. Pflugers Arch 452(2): 240–247

    CAS  PubMed  Google Scholar 

  42. Vasilyev DV, Merrill TL, Bowlby MR (2005) Development of a novel automated ion channel recording method using “inside-out” whole-cell membranes. J Biomol Screen 10(8): 806–813

    CAS  PubMed  Google Scholar 

  43. Stoelzle S, Haythornthwaite A, Kettenhofen R et al (2011) Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction. J Biomol Screen 16(8): 910–916

    CAS  PubMed  Google Scholar 

  44. Stoelzle S, Haythornthwaite A, Haarmann C et al (2011) Automated patch clamp with current clamp: action potential recordings from stem cell derived cardiomyocytes. Biophys J 100(3):196

    Google Scholar 

  45. Lepple-Wienhues A, Ferlinz K, Seeger A, Schafer A (2003) Flip the tip: an automated, high quality, cost-effective patch clamp screen. Recept Channels 9(1):13–17

    CAS  PubMed  Google Scholar 

  46. Milligan CJ, Li J, Sukumar P et al (2009) Robotic multiwell planar patch-clamp for native and primary mammalian cells. Nat Protoc 4(2):244–255

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Lenkey N, Karoly R, Lukacs P et al (2010) Classification of drugs based on properties of sodium channel inhibition: a comparative automated patch-clamp study. PLoS One 5(12):e15568

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Mathes C, Friis S, Finley M, Liu Y (2009) QPatch: the missing link between HTS and ion channel drug discovery. Comb Chem High Throughput Screen 12(1):78–95

    CAS  PubMed  Google Scholar 

  49. Hescheler J, Halbach M, Egert U et al (2004) Determination of electrical properties of ES cell-derived cardiomyocytes using MEAs. J Electrocardiol 37:110–116

    PubMed  Google Scholar 

  50. Redfern WS, Carlsson L, Davis AS et al (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 58(1):32–45

    CAS  PubMed  Google Scholar 

  51. Stett A, Egert U, Guenther E et al (2003) Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem 377(3):486–495

    CAS  PubMed  Google Scholar 

  52. Halbach MD, Egert U, Hescheler J, Banach K (2003) Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures. Cell Physiol Biochem 13(5):271–284

    CAS  PubMed  Google Scholar 

  53. Camelliti P, Abou Al-Saud S, Smolenski RT et al (2011) Adult human heart slices are a multicellular system suitable for electrophysiological and pharmacological studies. J Mol Cell Cardiol 51(3):390–398

    CAS  PubMed  Google Scholar 

  54. Braam SR, Tertoolen L, van de Stolpe A, Meyer T, Passier R, Mummery CL (2010) Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 4(2):107–116

    CAS  PubMed  Google Scholar 

  55. Caspi O, Itzhaki I, Kehat I et al (2009) In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev 18(1):161–172

    CAS  PubMed  Google Scholar 

  56. Amit M, Carpenter MK, Inokuma MS et al (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227(2):271–278

    CAS  PubMed  Google Scholar 

  57. Meyer T, LeIsgen C, Gonser B, Gunther E (2004) QT-Screen: high-throughput cardiac safety pharmacology by extracellular electrophysiology on primary cardiac myocytes. Assay Drug Dev Technol 2(5):507–514

    CAS  PubMed  Google Scholar 

  58. Kim MJ, Lee SC, Pal S, Han E, Song JM (2011) High-content screening of drug-induced cardiotoxicity using quantitative single cell imaging cytometry on microfluidic device. Lab Chip 11(1):104–114

    CAS  PubMed  Google Scholar 

  59. Crawford T, Mueller G, Good E et al (2010) Ventricular arrhythmias originating from papillary muscles in the right ventricle. Heart Rhythm 7(6):725–730

    PubMed  Google Scholar 

  60. Yamada T, Doppalapudi H, Mcelderry HT et al (2010) Idiopathic ventricular arrhythmias originating from the papillary muscles in the left ventricle: prevalence, electrocardiographic and electrophysiological characteristics, and results of the radiofrequency catheter ablation. J Cardiovasc Electrophysiol 21(1):62–69

    PubMed  Google Scholar 

  61. Yamada T, Mcelderry HT, Okada T et al (2009) Idiopathic focal ventricular arrhythmias originating from the anterior papillary muscle in the left ventricle. J Cardiovasc Electrophysiol 20(8):866–872

    PubMed  Google Scholar 

  62. Doppalapudi H, Yamada T, McElderry T, Plumb VJ, Epstein AE, Kay N (2008) Ventricular tachycardia originating from the posterior papillary muscle in the left ventricle: a distinct clinical syndrome. Circ Arrhythm Electrophysiol 1(1):23–29

    PubMed  Google Scholar 

  63. Good E, Desjardins B, Jongnarangsin K et al (2008) Ventricular arrhythmias originating from a papillary muscle in patients without prior infarction: a comparison with fascicular arrhythmias. Heart Rhythm 5(11):1530–1537

    PubMed  Google Scholar 

  64. Szebeni A, Szentandrassy N, Pacher P, Simko J, Nanasi PP, Kecskemeti V (2011) Can the electrophysiological action of rosiglitazone explain its cardiac side effects? Curr Med Chem 18(24):3720–3728

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Hill RE, Heard K, Bogdan GM, Cairns CB, Dart RC (2001) Attenuation of verapamil-induced myocardial toxicity in an ex-vivo rat model using a verapamil-specific ovine immunoglobin. Acad Emerg Med 8(10): 950–955

    CAS  PubMed  Google Scholar 

  66. Yang ZF, Li CZ, Wang W et al (2011) Electrophysiological mechanisms of sophocarpine as a potential antiarrhythmic agent. Acta Pharmacol Sin 32(3):311–320

    CAS  PubMed  Google Scholar 

  67. Mewe M, Mauerhofer M, Wulfsen I et al (2010) Modulation of cardiac ERG1 K(+) channels by cGMP signaling. J Mol Cell Cardiol 49(1):48–57

    CAS  PubMed  Google Scholar 

  68. Sensch O, Vierling W, Brandt W, Reiter M (2000) Effects of inhibition of calcium and potassium currents in guinea-pig cardiac contraction: comparison of beta-caryophyllene oxide, eugenol, and nifedipine. Br J Pharmacol 131(6):1089–1096

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Yan D, Cheng LF, Song HY, Turdi S, Kerram P (2007) Electrophysiological effects of haloperidol on isolated rabbit Purkinje fibers and guinea pigs papillary muscles under normal and simulated ischemia. Acta Pharmacol Sin 28(8):1155–1160

    CAS  PubMed  Google Scholar 

  70. Aubert M, Osterwalder R, Wagner B et al (2006) Evaluation of the rabbit Purkinje fibre assay as an in vitro tool for assessing the risk of drug-induced Torsades de Pointes in humans. Drug Saf 29(3):237–254

    CAS  PubMed  Google Scholar 

  71. Gintant GA, Limberis JT, McDermott JS, Wegner CD, Cox BF (2001) The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J Cardiovasc Pharmacol 37(5):607–618

    CAS  PubMed  Google Scholar 

  72. Champeroux P, Viaud K, El Amrani AI et al (2005) Prediction of the risk of Torsade de Pointes using the model of isolated canine Purkinje fibres. Br J Pharmacol 144(3): 376–385

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Lu HR, Vlaminckx E, Van de Water A, Rohrbacher J, Hermans A, Gallacher DJ (2006) In-vitro experimental models for the risk assessment of antibiotic-induced QT prolongation. Eur J Pharmacol 553(1–3): 229–239

    CAS  PubMed  Google Scholar 

  74. Hondeghem LM, Hoffmann P (2003) Blinded test in isolated female rabbit heart reliably identifies action potential duration prolongation and proarrhythmic drugs: importance of triangulation, reverse use dependence, and instability. J Cardiovasc Pharmacol 41(1):14–24

    CAS  PubMed  Google Scholar 

  75. Zhang XP, Wu BW, Yang CH, Wang J, Niu SC, Zhang MS (2009) Dofetilide enhances the contractility of rat ventricular myocytes via augmentation of Na+-Ca 2+ exchange. Cardiovasc Drugs Ther 23(3):207–214

    CAS  PubMed  Google Scholar 

  76. Stehr SN, Christ T, Rasche B et al (2007) The effects of Levosimendan on myocardial function in ropivacaine toxicity in isolated Guinea pig heart preparations. Anesth Analg 105(3): 641–647

    CAS  PubMed  Google Scholar 

  77. Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi ME (2007) Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells 25(5):1136–1144

    CAS  PubMed  Google Scholar 

  78. Asp J, Steel D, Jonsson M et al (2010) Cardiomyocyte clusters derived from human embryonic stem cells share similarities with human heart tissue. J Mol Cell Biol 2(5): 276–283

    CAS  PubMed  Google Scholar 

  79. Mandenius CF, Steel D, Noor F et al (2011) Cardiotoxicity testing using pluripotent stem cell-derived human cardiomyocytes and state-of-the-art bioanalytics: a review. J Appl Toxicol 31(3):191–205

    CAS  PubMed  Google Scholar 

  80. Wobus AM, Loser P (2011) Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 85(2):79–117

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Dick E, Rajamohan D, Ronksley J, Denning C (2010) Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochem Soc Trans 38: 1037–1045

    CAS  PubMed  Google Scholar 

  82. Steel D, Hyllner J, Sartipy P (2009) Cardiomyocytes derived from human embryonic stem cells—characteristics and utility for drug discovery. Curr Opin Drug Discov Devel 12(1):133–140

    CAS  PubMed  Google Scholar 

  83. Mordwinkin NM, Burridge PW, Wu JC (2013) A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 6(1):22–30

    PubMed Central  PubMed  Google Scholar 

  84. Rana P, Anson B, Engle S, Will Y (2012) Characterization of human-induced pluripotent stem cell-derived cardiomyocytes: bioenergetics and utilization in safety screening. Toxicol Sci 130(1):117–131

    CAS  PubMed  Google Scholar 

  85. Zeevi-Levin N, Itskovitz-Eldor J, Binah O (2012) Cardiomyocytes derived from human pluripotent stem cells for drug screening. Pharmacol Ther 134(2):180–188

    CAS  PubMed  Google Scholar 

  86. Hescheler J, Fleischmann BK, Lentini S et al (1997) Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc Res 36(2): 149–162

    CAS  PubMed  Google Scholar 

  87. Hescheler J, Fleischmann BK, Wartenberg M et al (1999) Establishment of ionic channels and signalling cascades in the embryonic stem cell-derived primitive endoderm and cardiovascular system. Cells Tissues Organs 165(3–4): 153–164

    CAS  PubMed  Google Scholar 

  88. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87(JUN):27–45

    CAS  PubMed  Google Scholar 

  89. Itskovitz-Eldor J, Schuldiner M, Karsenti D et al (2000) Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med 6(2):88–95

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Shiroi A, Yoshikawa M, Yokota H et al (2002) Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone. Stem Cells 20(4): 284–292

    CAS  PubMed  Google Scholar 

  91. Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103(5):389–398

    CAS  PubMed  Google Scholar 

  92. Burridge PW, Anderson D, Priddle H et al (2007) Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 25(4):929–938

    CAS  PubMed  Google Scholar 

  93. Takahashi T, Lord B, Schulze PC et al (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107(14):1912–1916

    CAS  PubMed  Google Scholar 

  94. Dang SM, Kyba M, Perlingeiro R, Daley GQ, Zandstra PW (2002) Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng 78(4): 442–453

    CAS  PubMed  Google Scholar 

  95. Koike M, Kurosawa H, Amano Y (2005) A round-bottom 96-well polystyrene plate coated with 2-methacryloyloxyethyl phosphorylcholine as an effective tool for embryoid body formation. Cytotechnology 47(1–3): 3–10

    PubMed Central  PubMed  Google Scholar 

  96. Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106(5):1601–1603

    CAS  PubMed  Google Scholar 

  97. Ungrin MD, Joshi C, Nica A, Bauwens C, Zandstra PW (2008) Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS One 3(2):e1565

    PubMed Central  PubMed  Google Scholar 

  98. Mummery C, Ward-van Oostwaard D, Doevendans P et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes—role of coculture with visceral endoderm-like cells. Circulation 107(21): 2733–2740

    CAS  PubMed  Google Scholar 

  99. Passier R, Oostwaard DWV, Snapper J et al (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23(6): 772–780

    CAS  PubMed  Google Scholar 

  100. Graichen R, Xu XQ, Braam SR et al (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76(4):357–370

    CAS  PubMed  Google Scholar 

  101. Filipczyk AA, Passier R, Rochat A, Mummery CL (2007) Regulation of cardiomyocyte differentiation of embryonic stem cells by extracellular signalling. Cell Mol Life Sci 64(6): 704–718

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Ao A, Hao JJ, Hopkins CR, Hong CC (2012) DMH1, a novel BMP small molecule inhibitor, increases cardiomyocyte progenitors and promotes cardiac differentiation in mouse embryonic stem cells. PLoS One 7(7):e41627

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Hao JJ, Daleo MA, Murphy CK et al (2008) Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS One 3(8):e2904

    PubMed Central  PubMed  Google Scholar 

  104. Tran TH, Wang XR, Browne C et al (2009) Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells 27(8):1869–1878

    CAS  PubMed  Google Scholar 

  105. Ren YM, Lee MY, Schliffke S et al (2011) Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. J Mol Cell Cardiol 51(3):280–287

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Wang HM, Hao JJ, Hong CC (2011) Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/β-catenin signaling. ACS Chem Biol 6(2):192–197

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Willems E, Spiering S, Davidovics H et al (2011) Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm. Circ Res 109(4):360–364

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Yang L, Soonpaa MH, Adler ED et al (2008) Human cardiovascular progenitor cells develop from a KDR plus embryonic-stem-cell-derived population. Nature 453(7194):524–526

    CAS  PubMed  Google Scholar 

  109. Lian XJ, Hsiao C, Wilson G et al (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109(27): E1848–E1857

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Lian XJ, Zhang JH, Azarin SM et al (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8(1): 162–175

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Sirenko O, Crittenden C, Callamaras N et al (2013) Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells. J Biomol Screen 18(1): 39–53

    PubMed  Google Scholar 

  112. Jonsson MKB, Wang QD, Becker B (2011) Impedance-based detection of beating rhythm and proarrhythmic effects of compounds on stem cell-derived cardiomyocytes. Assay Drug Dev Technol 9(6):589–599

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Xi BA, Wang TX, Li N et al (2011) Functional cardiotoxicity profiling and screening using the xCELLigence RTCA Cardio System. J Lab Autom 16(6):415–421

    CAS  PubMed  Google Scholar 

  114. Kaneko T, Nomura F, Hattori A, Yasuda K (2012) Improvement of electrical stimulation protocol for simultaneous measurement of extracellular potential with on-chip multi-electrode array system. Jpn J Appl Phys 51(6): 06FK02

    Google Scholar 

  115. Andersson H, Steel D, Asp J et al (2010) Assaying cardiac biomarkers for toxicity testing using biosensing and cardiomyocytes derived from human embryonic stem cells. J Biotechnol 150(1):175–181

    CAS  PubMed  Google Scholar 

  116. Abassi YA, Xi BA, Li N et al (2012) Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment. Br J Pharmacol 165(5):1424–1441

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Rajamani R, Tounge BA, Li J, Reynolds CH (2005) A two-state homology model of the hERG K+ channel: application to ligand binding. Bioorg Med Chem Lett 15(6): 1737–1741

    CAS  PubMed  Google Scholar 

  118. Pearlstein RA, Vaz RJ, Kang JS et al (2003) Characterization of HERG potassium channel inhibition using CoMSiA 3D QSAR and homology modeling approaches. Bioorg Med Chem Lett 13(10):1829–1835

    CAS  PubMed  Google Scholar 

  119. Masetti M, Cavalli A, Recanatini M (2008) Modeling the hERG potassium channel in a phospholipid bilayer: molecular dynamics and drug docking studies. J Comput Chem 29(5): 795–808

    CAS  PubMed  Google Scholar 

  120. Farid R, Day T, Friesner RA, Pearlstein RA (2006) New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorg Med Chem Lett 14(9):3160–3173

    CAS  Google Scholar 

  121. Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC (2000) A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci U S A 97(22):12329–12333

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Stary A, Wacker SJ, Boukharta L et al (2010) Toward a consensus model of the hERG potassium channel. ChemMedChem 5(3):455–467

    CAS  PubMed  Google Scholar 

  123. Su BH, Shen MY, Esposito EX, Hopfinger AJ, Tseng YJ (2010) In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage. J Chem Inf Model 50(7): 1304–1318

    CAS  PubMed  Google Scholar 

  124. Cianchetta G, Li Y, Kang JS et al (2005) Predictive models for hERG potassium channel blockers. Bioorg Med Chem Lett 15(15): 3637–3642

    CAS  PubMed  Google Scholar 

  125. Aronov MM (2005) Predictive in silico modeling for hERG channel blockers. Drug Discov Today 10(2):149–155

    CAS  PubMed  Google Scholar 

  126. Jamieson C, Moir EM, Rankovic Z, Wishart G (2006) Medicinal chemistry of hERG optimizations: highlights and hang-ups. J Med Chem 49(17):5029–5046

    CAS  PubMed  Google Scholar 

  127. Mirams GR, Davies MR, Cui Y, Kohl P, Noble D (2012) Application of cardiac electrophysiology simulations to pro-arrhythmic safety testing. Br J Pharmacol 167(5): 932–945

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agapios Sachinidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shinde, V., Chaudhari, U., Sotiriadou, I., Hescheler, J., Sachinidis, A. (2014). In Vitro Methods for Cardiotoxicity Testing. In: Bal-Price, A., Jennings, P. (eds) In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0521-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0521-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0520-1

  • Online ISBN: 978-1-4939-0521-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics