Skip to main content

Elastinolytic and Proteolytic Enzymes

  • Protocol
  • First Online:
Pseudomonas Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

Pseudomonas aeruginosa secretes into its environment at least seven extracellular proteases: pseudolysin (LasB protease; elastase), aeruginolysin (alkaline proteinase), staphylolysin (staphylolytic endopeptidase; LasA protease), lysyl endopeptidase (protease IV; PrpL), PASP (P. aeruginosa small protease), LepA (Large ExoProtease A), and an aminopeptidase. Their action on host proteins, both individually and synergistically, plays important roles in pathogenesis of P. aeruginosa infections. Methods to measure/detect their activities are fundamental for understanding their physiological functions, roles in pathogenesis, mechanisms of action, regulation, and secretion.

Most assays for determination/detection of proteolytic activity employ modified/non-modified casein or gelatin as substrates. In the quantitative assay, fragments generated from azocasein are separated from undigested substrate by trichloroacetic acid precipitation and their absorbance is measured. In non-quantitative assays, proteolytic activity is detected as clearing zones around bacterial growth or samples of culture supernatants on casein containing solid media formed due to local casein degradation. In zymography, individual proteases are detected as clear bands in gelatin/casein containing gels after SDS-PAGE separation, renaturation and protein staining. The elastinolytic capacity of P. aeruginosa is reflected by clearing zones on nutrient agar plates containing insoluble elastin instead of casein. Mueller-Hinton agar plates on which S. aureus cells are grown as a lawn are used to assess the susceptibility of S. aureus isolates to staphylolysin. A clear zone around a staphylolysin-containing sample indicates inhibition of S. aureus growth.

Methods for measuring the activity of individual proteases are based on their cleavage specificity. These include assays of elastinolytic activity of pseudolysin and/or staphylolysin using elastin-Congo red as a substrate, a method for determination of staphylolytic activity in which the rate of S. aureus cell lysis is determined spectrophotometrically, and methods for determination of peptidase activity of pseudolysin, staphylolysin, lysyl endopeptidase, and the aminopeptidase. The latter methods employ chromogenic or fluorogenic peptide derivatives comprising a short amino acid sequence matching the preferred cleavage site of the protease as substrates. As only one peptide bond is cleaved in each substrate, these assays permit kinetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Abz:

2-Aminobenzoyl

AMC:

7-Amino-4-methylcoumarin (or 7-amido-4-methylcoumarin)

APS:

Ammonium persulfate

Dabsyl:

4-(Dimethylamino) azobenzene-4 sulfonyl chloride

DDW:

Double distilled water (de-ionized water)

DFP:

Diisopropyl fluorophosphate

DMF:

Dimethylformamide

EDANS:

5-(2-Aminoethylamino)-1-naphthalene sulfonic acid

FA:

Furylacryloyl

FITC:

Fluorescein isothiocyanate

LB:

Luria broth

Nba:

4-Nitrobenzylamide

PBS:

Phosphate buffered saline

PMSF:

Phenylmethylsulfonyl fluoride

pNA:

para-Nitroanilide

RFU:

Relative fluorescence units

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SGAP:

Streptomyces griseus aminopeptidase

Su:

Succinyl

TCA:

Trichloro acetic acid

TEMED:

N,N,N′,N′-Tetramethylethylenediamine

TLCK:

N α-p-Tosyl-l-lysine chloromethyl ketone

Tris:

2-Amino-2-(hydroxymethyl)-1,3-propanediol

TSB:

Tryptic soy broth

Z:

N-Carbobenzyloxy-

References

  1. Driscoll JA, Brody SL, Kollef MH (2007) The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67:351–368

    Article  CAS  PubMed  Google Scholar 

  2. Hoge R, Pelzer A, Rosenau F, Wilhelm S (2010) Weapons of pathogen: proteases and their role in virulence of Pseudomonas aeruginosa. In: Mendez-Vilas A (ed) Current Research, technology and education topics in applied microbiology and microbial biotechnology, 2010th edn. Formatex Research Center, Badajoz, Spain, pp 383–395

    Google Scholar 

  3. Kessler E, Ohman DE (2013) Pseudolysin. In: Rawlings ND, Salversen GS (eds) Handbook of proteolytic enzymes, 3rd edn. Academic, Oxford, pp 582–592

    Chapter  Google Scholar 

  4. Honek JF (2013) Aeruginolysin. In: Rawlings ND, Salversen GS (eds) Handbook of proteolytic enzymes, 3rd edn. Academic, Oxford, pp 867–872

    Chapter  Google Scholar 

  5. Kessler E, Ohman DE (2013) Staphylolysin. In: Rawlings ND, Salversen GS (eds) Handbook of proteolytic enzymes, 3rd edn. Academic, Oxford, pp 1553–1557

    Chapter  Google Scholar 

  6. Elliott BW, Cohen C (1996) Isolation and characterization of a lysine-specific protease from Pseudomonas aeruginosa. J Biol Chem 261:11259–11265

    Article  Google Scholar 

  7. Caballero AR, Moreau JM, Engel LS, Marquart ME, Hill JM, O’Callaghan RJ (2001) Pseudomonas aeruginosa protease IV enzyme assays and comparison to other Pseudomonas proteases. Anal Biochem 290:330–337

    Article  CAS  PubMed  Google Scholar 

  8. Engel LS, Hill JM, Caballero AR, Green LC, O’Callaghan RJ (1998) Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J Biol Chem 273:16792–16797

    Article  CAS  PubMed  Google Scholar 

  9. Thibodeaux BA, Caballero AR, Dajcs JJ, Marquart ME (2005) Pseudomonas aeruginosa protease IV: a corneal virulence factor of low immunogenicity. Ocul Immunol Inflamm 13:169–182

    Article  CAS  PubMed  Google Scholar 

  10. Wilderman PJ, Vasil AI, Johnson Z, Wilson MJ, Cunliffe HE, Lamont IL, Vasil ML (2001) Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa. Infect Immun 69:5385–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marquart ME, Caballero AR, Chomnawang M, Thibodeaux BA, Twining SS, O’Callaghan RJ (2005) Identification of a novel secreted protease from Pseudomonas aeruginosa that causes corneal erosions. Invest Ophtalmol Vis Sci 46:3761–3768

    Article  Google Scholar 

  12. Kida Y, Higashimoto Y, Inou H, Shimizu T, Kuwano K (2008) A novel secreted protease from Pseudomonas aeruginosa activates NF-kB through protease-activated receptors. Cell Microbiol 10:1491–1504

    Article  CAS  PubMed  Google Scholar 

  13. Tang A, Marquart ME, Fratkin JD, McCormick CC, Caballero AR, Gatlin HP, O'Callaghan RJ (2009) Properties of PASP: a Pseudomonas protease capable of mediating corneal erosions. Invest Ophtalmol Vis Sci 50:3794–3801

    Article  Google Scholar 

  14. Cahan R, Axelrad I, Safrin M, Ohman DE, Kessler E (2001) A secreted aminopeptidase of Pseudomonas aeruginosa: identification, primary structure, and relationship to other aminopeptidases. J Biol Chem 276:43645–43652

    Article  CAS  PubMed  Google Scholar 

  15. Sarnovsky R, Rea J, Makowski M, Hertle R, Kelly C, Antignani A, Pastrana DV, FitzGerald DJ (2009) Proteolytic cleavage of a C-terminal prosequence, leading to autoprocessing at the N Terminus, activates leucine aminopeptidase from Pseudomonas aeruginosa. J Biol Chem 284:10243–10253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38(Database issue):D227–D233

    Article  CAS  PubMed  Google Scholar 

  17. Elston C, Wallach J, Saulnier J (2007) New continuous and specific fluorometric assays for Pseudomonas aeruginosa elastase and LasA protease. Anal Biochem 368:87–94

    Article  CAS  PubMed  Google Scholar 

  18. Nishino N, Powers JC (1980) Pseudomonas aeruginosa elastase. Development of a new substrate, inhibitors, and an affinity ligand. J Biol Chem 255:3482–3486

    Article  CAS  PubMed  Google Scholar 

  19. Morihara K (1995) Pseudolysin and other pathogen endopeptidases of thermolysin family. Methods Enzymol 248:242–253

    Article  CAS  PubMed  Google Scholar 

  20. Starcher BC (1986) Elastin and the lung. Thorax 41:577–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morihara K, Tsuzuki H, Oka T, Inoue H, Ebata M (1965) Pseudomonas aeruginosa elastase. Isolation, crystallization and preliminary characterization. J Biol Chem 240:3295–3304

    Article  CAS  PubMed  Google Scholar 

  22. Morihara K (1963) Pseudomonas aeruginosa proteinase. I. Purification and general properties. Biochim Biophys Acta 73:113–124

    Article  CAS  Google Scholar 

  23. Maeda H, Morihara K (1995) Serralysin and related bacterial proteinases. Methods Enzymol 248:395–413

    Article  CAS  PubMed  Google Scholar 

  24. Louis D, Kohlmann M, Wallach J (1997) Spectrophotometric assay for amidolytic activity of alkaline protease from Pseudomonas aeruginosa. Anal Chim Acta 345:219–225

    Article  CAS  Google Scholar 

  25. Louis D, Bernillon J, Wallach J (1999) Use of 49-peptide library for a qualitative and quantitative determination of pseudomonal serralysin specificity. Int J Biochem Cell Biol 31:1435–1441

    Article  CAS  PubMed  Google Scholar 

  26. Butterworth MB, Zhang L, Heidrich EM, Myerburg MM, Thibodeau PH (2012) Activation of the epithelial sodium channel (ENaC) by the alkaline protease from Pseudomonas aeruginosa. J Biol Chem 287:32556–32565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohman DE, Cryze SJ, Iglewski BH (1980) Isolation and characterization of a Pseudomonas aeruginosa PAO mutant that produces altered elastase. J Bacteriol 142:836–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bever RA, Iglewski BH (1988) Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J Bacteriol 170:4309–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kessler E, Safrin M, Olson JC, Ohman DE (1993) Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem 268:7503–7508

    Article  PubMed  Google Scholar 

  30. Kessler E, Safrin M, Abrams WR, Rosenbloom J, Ohman DE (1997) Inhibitors and specificity of Pseudomonas aeruginosa LasA. J Biol Chem 272:9884–9889

    Article  CAS  PubMed  Google Scholar 

  31. Park PW, Pier GB, Preston MJ, Goldberger O, Fitzgerald ML, Bernfield M (2000) Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J Biol Chem 275:3057–3064

    Article  CAS  PubMed  Google Scholar 

  32. Park PW, Pier GB, Hinkes MT, Bernfield M (2001) Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 411:98–102

    Article  CAS  PubMed  Google Scholar 

  33. Barequet IS, Bourla N, Pessach YN, Safrin M, Yankovich D, Ohman DE, Rosner M, Kessler E (2012) Staphylolysin is an effective therapeutic agent for Staphylococcus aureus experimental keratitis. Graefes Arch Clin Exp Ophthalmol 250:223–229

    Article  CAS  PubMed  Google Scholar 

  34. Barequet IS, Habot-Wilner Z, Mann O, Safrin M, Ohman DE, Kessler E, Rosner M (2009) Evaluation of Pseudomonas aeruginosa staphylolysin (LasA protease) in the treatment of methicillin-resistant Staphylococcus aureus endophthalmitis in a rat model. Graefes Arch Clin Exp Ophthalmol 247:913–917

    Article  PubMed  Google Scholar 

  35. Kessler E, Safrin M, Blumberg S, Ohman DE (2004) A continuous spectrophotometric assay for Pseudomonas aeruginosa LasA protease (staphylolysin) using a two-stage enzymatic reaction. Anal Biochem 328:225–232

    Article  CAS  PubMed  Google Scholar 

  36. Gustin GK, Kessler E, Ohman DE (1996) A substitution at His-120 in the LasA protease of Pseudomonas aeruginosa blocks enzymatic activity without affecting propeptide processing or extracellular secretion. J Bacteriol 178:6608–6617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar JK (2008) Lysostaphin: an antistaphylococcal agent. Appl Microbiol Biotechnol 80:555–561

    Article  CAS  PubMed  Google Scholar 

  38. Kline SA, de la Harpe J, Blackburn P (1994) A colorimetric microtiter plate assay for lysostaphin using a hexaglycine substrate. Anal Biochem 217:329–331

    Article  CAS  PubMed  Google Scholar 

  39. Malloy JL, Veldhuizen RAW, Thibodeux BA, O'Callaghan RJ, Wright JR (2005) Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. Am J Physiol Lung Cell Mol Physiol 288:L409–L418

    Article  CAS  PubMed  Google Scholar 

  40. Caballero A, Thibodeux BA, Marquart M, Traidej M, O’Callaghan RJ (2004) Pseudomonas keratitis: protease IV gene conservation, distribution, and production relative to virulence and other Pseudomonas proteases. Invest Ophthalmol Vis Sci 45:522–530

    Article  PubMed  Google Scholar 

  41. Kessler E, Israel M, Landshman N, Chechick A, Blumberg S (1982) In vitro inhibition of Pseudomonas aeruginosa elastase by metal chelating peptide derivatives. Infect Immun 38:716–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Twining SS (1984) Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes. Anal Biochem 143:30–34

    Article  CAS  PubMed  Google Scholar 

  43. Poncz L, Gerken TA, Dearborn DG, Grobelny D, Galardy RE (1984) Inhibition of the elastase of Pseudomonas aeruginosa by Nα-phosphoryl dipeptides and kinetics of spontaneous hydrolysis of the inhibitors. Biochemistry 23:2766–2772

    Article  CAS  PubMed  Google Scholar 

  44. He H, Chen X, Li J, Zhang Y, Gao P (2004) Taste improvement of refrigerated meat treated with cold-adapted protease. Food Chem 84:307–311

    Article  CAS  Google Scholar 

  45. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  46. Lin X, Xu W, Huang K, Mei X, Liang Z, Li Z, Guo J, Luo Y (2009) Cloning, expression and characterization of recombinant elastase from Pseudomonas aeruginosa in Pichia pastoris. Protein Expr Purif 63:69–74

    Article  CAS  PubMed  Google Scholar 

  47. Laux CD, Corson JM, Givskov M, Hentzer M, Møller A, Wosencroft KA, Olson JC, Krogfelt KA, Goldberg JB, Cohen PS (2002) Lysophosphatidic acid inhibition of the accumulation of Pseudomonas aeruginosa PAO1 alginate, pyoverdin, elastase and LasA. Microbiology 148:1709–1723

    Article  CAS  PubMed  Google Scholar 

  48. Twining SS, Kirschner SE, Mahnke LA, Frank DW (1993) Effect of Pseudomonas aeruginosa elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins. Invest Ophthalmol Vis Sci 34:2699–2712

    CAS  PubMed  Google Scholar 

  49. Charney J, Tomarelli RM (1947) A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem 171:501–505

    Article  CAS  PubMed  Google Scholar 

  50. Naughton MA, Sanger F (1961) Purification and specificity of pancreatic elastase. Biochem J 78:156–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McIver K, Kessler E, Ohman DE (1991) Substitution of active-site His-223 in Pseudomonas aeruginosa elastase and expression of the mutated lasB alleles in Escherichia coli show evidence for autoproteolytic processing of proelastase. J Bacteriol 173:7781–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rust L, Messing CR, Iglewski BH (1994) Elastase assays. Methods Enzymol 235:554–562

    Article  CAS  PubMed  Google Scholar 

  53. Hasan JAK, Macaluso P, Carnahan AM, Joseph SW (1992) Elastolytic activity among Aeromonas spp. using a modified bilayer plate assay. Diagn Microbiol Infect Dis 15:201–206

    Article  CAS  PubMed  Google Scholar 

  54. Catchart GRA, Quinn D, Greer B, Harriott P, Lynas JF, Gilmore BF, Walker B (2011) Novel inhibitors of the Pseudomonas aeruginosa virulence factor LasB: a potential therapeutic approach for attenuation of virulence mechanisms in Pseudomonal infection. Antimicrob Agents Chemother 55:2670–2678

    Article  CAS  Google Scholar 

  55. Kusuma CM, Kokai-Kun JF (2005) Comparison of four methods for determining lysostaphin susceptibility of various strains of Staphylococcus aureus. Antimicrob Agents Chemotherapy 49:3256–3263

    Article  CAS  Google Scholar 

  56. Morihara K, Tsuzuki H (1978) Phosphoramidon as an inhibitor of elastase from Pseudomonas aeruginosa. Jpn J Exp Med 48:81–84

    CAS  PubMed  Google Scholar 

  57. Peters JE, Park JSJ, Darzins A, Freck LC, Saulnier JM, Wallach JM, Galloway D (1992) Further studies on Pseudomonas aeruginosa LasA: analysis of specificity. Mol Microbiol 6:1155–1162

    Article  CAS  PubMed  Google Scholar 

  58. Prescott JM, Wilkes SH (1976) Aeromonas aminopeptidase. Methods Enzymol 45:530–543

    Article  CAS  PubMed  Google Scholar 

  59. Zimmerman M, Yurewicz E, Patel G (1976) A new fluorogenic substrate for chymotrypsin. Anal Biochem 70:258–262

    Article  CAS  PubMed  Google Scholar 

  60. Matsumoto H, Rogi T, Yamashiro K, Kodama S, Tsuruoka N, Hattori A, Takio K, Mizutani S, Tsujimoto M (2000) Characterization of a recombinant soluble form of human placental leucine aminopeptidase/oxytocinase expressed in Chinese hamster ovary cells. Eur J Biochem 267:46–52

    Article  CAS  PubMed  Google Scholar 

  61. Tingpej P, Smith L, Rose B, Zhu H, Conibear T, Al Nassafi K, Manos J, Elkins M, Bye P, Willcox M, Bell S, Wainwright C, Harbour C (2007) Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J Clin Microbiol 45:1697–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Toder DS, Gambello MJ, Iglewski BH (1991) Pseudomonas aeruginosa LasA: a second elastase under transcriptional control of lasR. Mol Microbiol 5:2003–2010

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efrat Kessler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kessler, E., Safrin, M. (2014). Elastinolytic and Proteolytic Enzymes. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics