Skip to main content

Collisionless Shocks in Partly Ionized Plasma with Cosmic Rays: Microphysics of Non-thermal Components

  • Chapter
Microphysics of Cosmic Plasmas

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 47))

  • 1417 Accesses

Abstract

In this review we discuss some observational aspects and theoretical models of astrophysical collisionless shocks in partly ionized plasma with the presence of non-thermal components. A specific feature of fast strong collisionless shocks is their ability to accelerate energetic particles that can modify the shock upstream flow and form the shock precursors. We discuss the effects of energetic particle acceleration and associated magnetic field amplification and decay in the extended shock precursors on the line and continuum multi-wavelength emission spectra of the shocks. Both Balmer-type and radiative astrophysical shocks are discussed in connection to supernova remnants interacting with partially neutral clouds. Quantitative models described in the review predict a number of observable line-like emission features that can be used to reveal the physical state of the matter in the shock precursors and the character of nonthermal processes in the shocks. Implications of recent progress of gamma-ray observations of supernova remnants in molecular clouds are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A.A. Abdo, M. Ackermann, M. Ajello, L. Baldini et al., Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT. Science 327, 1103–1106 (2010a)

    ADS  Google Scholar 

  • A.A. Abdo, M. Ackermann, M. Ajello, L. Baldini et al., Observation of supernova remnant IC 443 with the Fermi Large Area Telescope. Astrophys. J. 712, 459–468 (2010b). arXiv:1002.2198

    ADS  Google Scholar 

  • A. Achterberg, On the propagation of relativistic particles in a high beta plasma. Astron. Astrophys. 98, 161–172 (1981)

    ADS  MATH  Google Scholar 

  • M. Ackermann, M. Ajello, A. Allafort, L. Baldini et al., Detection of the characteristic pion-decay signature in supernova remnants. Science 339, 807–811 (2013)

    ADS  Google Scholar 

  • F.A. Aharonian, A.G. Akhperjanian, K.M. Aye, A.R. Bazer-Bachi et al., High-energy particle acceleration in the shell of a supernova remnant. Nature 432, 75–77 (2004). arXiv:astro-ph/0411533

    ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, M. Beilicke et al., A detailed spectral and morphological study of the gamma-ray supernova remnant RX J1713.7-3946 with HESS. Astron. Astrophys. 449, 223–242 (2006)

    ADS  Google Scholar 

  • J. Aleksić, E.A. Alvarez, L.A. Antonelli, P. Antoranz et al., Morphological and spectral properties of the W51 region measured with the MAGIC telescopes. Astron. Astrophys. 541, A13 (2012). arXiv:1201.4074

    ADS  Google Scholar 

  • O. Alexandrova, C. Lacombe, A. Mangeney, R. Grappin, Fluid-like dissipation of magnetic turbulence at electron scales in the solar wind (2011). arXiv:1111.5649

  • E. Amato, P. Blasi, Non-linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence. Mon. Not. R. Astron. Soc. 371, 1251–1258 (2006). arXiv:astro-ph/0606592

    ADS  Google Scholar 

  • A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004)

    ADS  Google Scholar 

  • R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1–75 (1987)

    ADS  Google Scholar 

  • P. Blasi, G. Morlino, R. Bandiera, E. Amato et al., Collisionless shocks in a partially ionized medium. I. Neutral return flux and its effects on acceleration of test particles. Astrophys. J. 755, 121 (2012). arXiv:1202.3080

    ADS  Google Scholar 

  • M.F. Bode, D.J. Harman, T.J. O’Brien, H.E. Bond et al., Hubble space telescope imaging of the expanding nebular remnant of the 2006 outburst of the recurrent Nova RS Ophiuchi. Astrophys. J. 665, L63–L66 (2007). arXiv:0706.2745

    ADS  Google Scholar 

  • S. Boldyrev, J.C. Perez, Spectrum of kinetic-Alfvén turbulence. Astrophys. J. 758, L44 (2012). arXiv:1204.5809

    ADS  Google Scholar 

  • A. Boulares, D.P. Cox, Application of cosmic-ray shock theories to the Cygnus Loop—an alternative model. Astrophys. J. 333, 198–218 (1988)

    ADS  Google Scholar 

  • S.V. Bozhokin, A.M. Bykov, Nonthermal particles in H I shells and supershells. Astron. Lett. 20, 503–507 (1994)

    ADS  Google Scholar 

  • S.I. Braginskii, Transport processes in a plasma. Rev. Plasma Phys. 1, 205 (1965)

    ADS  Google Scholar 

  • B. Breech, W.H. Matthaeus, S.R. Cranmer, J.C. Kasper et al., Electron and proton heating by solar wind turbulence. J. Geophys. Res. 114(A13), A09103 (2009). arXiv:0907.4074

    ADS  Google Scholar 

  • M. Brüggen, A. Bykov, D. Ryu, H. Röttgering, Magnetic fields, relativistic particles, and shock waves in cluster outskirts. Space Sci. Rev. 166, 187–213 (2012). arXiv:1107.5223

    ADS  Google Scholar 

  • A.M. Bykov, Shocks and particle acceleration in SNRs: theoretical aspects. Adv. Space Res. 33, 366–375 (2004)

    ADS  Google Scholar 

  • A.M. Bykov, Multi-fluid shocks in clusters of galaxies: entropy, σ v T, M T and L X T scalings. Adv. Space Res. 36, 738–746 (2005). arXiv:astro-ph/0501575

    ADS  Google Scholar 

  • A.M. Bykov, I.N. Toptygin, Generation of magnetic fluctuations near a shock front in a partially ionized medium. Astron. Lett. 31, 748–754 (2005)

    ADS  Google Scholar 

  • A.M. Bykov, R.A. Chevalier, D.C. Ellison, Y.A. Uvarov, Nonthermal emission from a supernova remnant in a molecular cloud. Astrophys. J. 538, 203–216 (2000)

    ADS  Google Scholar 

  • A.M. Bykov, K. Dolag, F. Durret, Cosmological shock waves. Space Sci. Rev. 134, 119–140 (2008). arXiv:0801.0995

    ADS  Google Scholar 

  • A.M. Bykov, S.M. Osipov, D.C. Ellison, Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. Mon. Not. R. Astron. Soc. 410, 39–52 (2011). arXiv:1010.0408

    ADS  Google Scholar 

  • A.M. Bykov, D.C. Ellison, M. Renaud, Magnetic fields in cosmic particle acceleration sources. Space Sci. Rev. 166, 71–95 (2012). arXiv:1105.0130

    ADS  Google Scholar 

  • E. Carmona, Probing proton acceleration in W51C with MAGIC, in International Cosmic Ray Conference, vol. 7 (2011), p. 114. arXiv:1110.0950

    Google Scholar 

  • G. Castelletti, G. Dubner, C. Brogan, N.E. Kassim, The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz. Astron. Astrophys. 471, 537–549 (2007)

    ADS  Google Scholar 

  • C.H.K. Chen, A. Mallet, A.A. Schekochihin, T.S. Horbury et al., Three-dimensional structure of solar wind turbulence. Astrophys. J. 758, 120 (2012). arXiv:1109.2558

    ADS  Google Scholar 

  • R.A. Chevalier, J.C. Raymond, Optical emission from a fast shock wave—the remnants of Tycho’s supernova and SN 1006. Astrophys. J. 225, L27–L30 (1978)

    ADS  Google Scholar 

  • J. Cho, A. Lazarian, The anisotropy of electron magnetohydrodynamic turbulence. Astrophys. J. 615, L41–L44 (2004). arXiv:astro-ph/0406595

    ADS  Google Scholar 

  • T.G. Cowling, Magnetohydrodynamics (1976)

    MATH  Google Scholar 

  • S.R. Cranmer, A.A. van Ballegooijen, Proton, electron, and ion heating in the fast solar wind from nonlinear coupling between Alfvénic and fast-mode turbulence. Astrophys. J. 754, 92 (2012). arXiv:1205.4613

    ADS  Google Scholar 

  • M.A. Dopita, R.S. Sutherland, Spectral signatures of fast shocks. I. Low-density model grid. Astrophys. J. Suppl. Ser. 102, 161 (1996)

    ADS  Google Scholar 

  • B.T. Draine, C.F. McKee, Theory of interstellar shocks. Annu. Rev. Astron. Astrophys. 31, 373–432 (1993)

    ADS  Google Scholar 

  • L.O. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46, 973–1027 (1983)

    ADS  Google Scholar 

  • L.O. Drury, S.A.E.G. Falle, On the stability of shocks modified by particle acceleration. Mon. Not. R. Astron. Soc. 223, 353 (1986)

    ADS  MATH  Google Scholar 

  • L.O.C. Drury, P. Duffy, J.G. Kirk, Limits on diffusive shock acceleration in dense and incompletely ionised media. Astron. Astrophys. 309, 1002–1010 (1996)

    ADS  Google Scholar 

  • T.H. Dupree, A perturbation theory for strong plasma turbulence. Phys. Fluids 9(9), 1773–1782 (1966)

    ADS  MathSciNet  Google Scholar 

  • D.C. Ellison, M.G. Baring, F.C. Jones, Nonlinear particle acceleration in oblique shocks. Astrophys. J. 473, 1029 (1996). arXiv:astro-ph/9609182

    ADS  Google Scholar 

  • D.C. Ellison, A.M. Bykov, Gamma-ray emission of accelerated particles escaping a supernova remnant in a molecular cloud. Astrophys. J. 731, 87 (2011). arXiv:1102.3885

    ADS  Google Scholar 

  • D.C. Ellison, P. Slane, D.J. Patnaude, A.M. Bykov, Core-collapse model of broadband emission from SNR RX J1713.7-3946 with thermal X-rays and gamma rays from escaping cosmic rays. Astrophys. J. 744, 39 (2012). arXiv:1109.0874

    ADS  Google Scholar 

  • R. Enomoto, T. Tanimori, T. Naito, T. Yoshida et al., The acceleration of cosmic-ray protons in the supernova remnant RX J1713.7-3946. Nature 416, 823–826 (2002)

    ADS  Google Scholar 

  • A. Evans, C.E. Woodward, L.A. Helton, R.D. Gehrz et al., Spitzer and ground-based infrared observations of the 2006 eruption of RS Ophiuchi. Astrophys. J. 663, L29–L32 (2007). arXiv:0705.2414

    ADS  Google Scholar 

  • C.L. Farage, P.J. McGregor, M.A. Dopita, G.V. Bicknell, Optical IFU observations of the brightest cluster galaxy NGC 4696: the case for a minor merger and shock-excited filaments. Astrophys. J. 724, 267–284 (2010). arXiv:1009.3070

    ADS  Google Scholar 

  • R.A. Fesen, H. Itoh, A two-dimensional spectrum of a nonradiative shock filament in the Cygnus Loop. Astrophys. J. 295, 43–50 (1985)

    ADS  Google Scholar 

  • K. France, R. McCray, S.V. Penton, R.P. Kirshner et al., HST-COS observations of hydrogen, helium, carbon, and nitrogen emission from the SN 1987A reverse shock. Astrophys. J. 743, 186 (2011). arXiv:1111.1735

    ADS  Google Scholar 

  • Y. Fujita, Y. Ohira, R. Yamazaki, Entropy at the outskirts of galaxy clusters as implications for cosmological cosmic-ray acceleration. Astrophys. J. 767, L4 (2013). arXiv:1303.1191

    ADS  Google Scholar 

  • L. Gargaté, A. Spitkovsky, Ion acceleration in non-relativistic astrophysical shocks. Astrophys. J. 744, 67 (2012). arXiv:1107.0762

    ADS  Google Scholar 

  • S.P. Gary, O. Chang, W.J. Forward, Cascade of Whistler turbulence: three-dimensional particle-in-cell simulations. Astrophys. J. 755, 142 (2012)

    ADS  Google Scholar 

  • P. Ghavamian, J.M. Laming, C.E. Rakowski, A physical relationship between electron-proton temperature equilibration and Mach number in fast collisionless shocks. Astrophys. J. 654, L69–L72 (2007). arXiv:astro-ph/0611306

    ADS  Google Scholar 

  • P. Ghavamian, J. Raymond, P. Hartigan, W.P. Blair, Evidence for shock precursors in Tycho’s supernova remnant. Astrophys. J. 535, 266–274 (2000)

    ADS  Google Scholar 

  • P. Ghavamian, J. Raymond, R.C. Smith, P. Hartigan, Balmer-dominated spectra of nonradiative shocks in the Cygnus Loop, RCW 86, and Tycho supernova remnants. Astrophys. J. 547, 995–1009 (2001). arXiv:astro-ph/0010496

    ADS  Google Scholar 

  • T. Giannini, L. Calzoletti, B. Nisini, C.J. Davis et al., Near-infrared, IFU spectroscopy unravels the bow-shock HH99B. Astron. Astrophys. 481, 123–139 (2008). arXiv:0801.1633

    ADS  Google Scholar 

  • A. Giuliani, M. Cardillo, M. Tavani, Y. Fukui et al., Neutral pion emission from accelerated protons in the supernova remnant W44. Astrophys. J. 742, L30 (2011). arXiv:1111.4868

    ADS  Google Scholar 

  • G. Gloeckler, J. Geiss, Heliospheric and interstellar phenomena deduced from pickup ion observations. Space Sci. Rev. 97, 169–181 (2001)

    ADS  Google Scholar 

  • P. Goldreich, S. Sridhar, Toward a theory of interstellar turbulence. 2: Strong Alfvenic turbulence. Astrophys. J. 438, 763–775 (1995)

    ADS  Google Scholar 

  • P. Hartigan, J. Raymond, L. Hartmann, Radiative bow shock models of Herbig-Haro objects. Astrophys. J. 316, 323–348 (1987)

    ADS  Google Scholar 

  • E.A. Helder, J. Vink, C.G. Bassa, A. Bamba et al., Measuring the cosmic-ray acceleration efficiency of a supernova remnant. Science 325, 719 (2009). arXiv:0906.4553

    ADS  Google Scholar 

  • E.A. Helder, D. Kosenko, J. Vink, Cosmic-ray acceleration efficiency versus temperature equilibration: the case of SNR 0509-67.5. Astrophys. J. 719, L140–L144 (2010). arXiv:1007.3138

    ADS  Google Scholar 

  • E.A. Helder, J. Vink, A.M. Bykov, Y. Ohira et al., Observational signatures of particle acceleration in supernova remnants. Space Sci. Rev. 173, 369–431 (2012). arXiv:1206.1593

    ADS  Google Scholar 

  • K. Heng, Balmer-dominated shocks: a concise review. Publ. Astron. Soc. Aust. 27, 23–44 (2010). arXiv:0908.4080

    ADS  Google Scholar 

  • K. Heng, R. McCray, Balmer-dominated shocks revisited. Astrophys. J. 654, 923–937 (2007). arXiv:astro-ph/0609331

    ADS  Google Scholar 

  • K. Heng, M. van Adelsberg, R. McCray, J.C. Raymond, The transition zone in Balmer-dominated shocks. Astrophys. J. 668, 275–284 (2007). arXiv:0705.2619

    ADS  Google Scholar 

  • J.J. Hester, J.C. Raymond, W.P. Blair, The Balmer-dominated northeast limb of the Cygnus Loop supernova remnant. Astrophys. J. 420, 721–745 (1994)

    ADS  Google Scholar 

  • G.G. Howes, A prescription for the turbulent heating of astrophysical plasmas. Mon. Not. R. Astron. Soc. 409, L104–L108 (2010). arXiv:1009.4212

    ADS  Google Scholar 

  • G.G. Howes, S.C. Cowley, W. Dorland, G.W. Hammett et al., Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590–614 (2006). arXiv:astro-ph/0511812

    ADS  Google Scholar 

  • T. Inoue, R. Yamazaki, S. Inutsuka, Y. Fukui, Toward understanding the cosmic-ray acceleration at young supernova remnants interacting with interstellar clouds: possible applications to RX J1713.7-3946. Astrophys. J. 744, 71 (2012). arXiv:1106.3080

    ADS  Google Scholar 

  • F.C. Jones, D.C. Ellison, The plasma physics of shock acceleration. Space Sci. Rev. 58, 259–346 (1991)

    ADS  Google Scholar 

  • T. Kamae, N. Karlsson, T. Mizuno, T. Abe et al., Parameterization of gamma, e+/−, and neutrino spectra produced by p-p interaction in astronomical environments. Astrophys. J. 647, 692–708 (2006)

    ADS  Google Scholar 

  • N. Karlsson, T. Kamae, Parameterization of the angular distribution of gamma rays produced by p-p interaction in astronomical environments. Astrophys. J. 674, 278–285 (2008)

    ADS  Google Scholar 

  • B. Katz, E. Waxman, In which shell-type SNRs should we look for gamma-rays and neutrinos from p p collisions? J. Cosmol. Astropart. Phys. 2008(1), 018 (2008)

    Google Scholar 

  • R. Kulsrud, W.P. Pearce, The effect of wave-particle interactions on the propagation of cosmic rays. Astrophys. J. 156, 445–469 (1969)

    ADS  Google Scholar 

  • R.J. Leamon, C.W. Smith, N.F. Ness, W.H. Matthaeus et al., Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775 (1998)

    ADS  Google Scholar 

  • J.J. Lee, B.C. Koo, J. Raymond, P. Ghavamian et al., Subaru HDS observations of a Balmer-dominated shock in Tycho’s supernova remnant. Astrophys. J. 659, L133–L136 (2007). arXiv:0704.1094

    ADS  Google Scholar 

  • J.J. Lee, J.C. Raymond, S. Park, W.P. Blair et al., Resolved shock structure of the Balmer-dominated filaments in Tycho’s supernova remnant: cosmic-ray precursor? Astrophys. J. 715, L146–L149 (2010). arXiv:1005.3296

    ADS  Google Scholar 

  • A.J. Lim, A.C. Raga, A distribution function calculation of the Hα profiles of high-velocity shocks—II. The broad component neutral precursor. Mon. Not. R. Astron. Soc. 280, 103–114 (1996)

    ADS  Google Scholar 

  • M.A. Malkov, Analytic solution for nonlinear shock acceleration in the Bohm limit. Astrophys. J. 485, 638 (1997). arXiv:astro-ph/9707152

    ADS  Google Scholar 

  • M.A. Malkov, L.O. Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429–481 (2001)

    ADS  Google Scholar 

  • M.A. Malkov, P.H. Diamond, R.Z. Sagdeev, On the gamma-ray spectra radiated by protons accelerated in supernova remnant shocks near molecular clouds: the case of supernova remnant RX J1713.7-3946. Astrophys. J. 624, L37–L40 (2005)

    ADS  Google Scholar 

  • M.A. Malkov, P.H. Diamond, R.Z. Sagdeev, Mechanism for spectral break in cosmic ray proton spectrum of supernova remnant W44. Nat. Commun. 2, 1195 (2011). arXiv:1004.4714

    Google Scholar 

  • M.A. Malkov, R.Z. Sagdeev, P.H. Diamond, Magnetic and density spikes in cosmic-ray shock precursors. Astrophys. J. 748, L32 (2012). arXiv:1110.0257

    ADS  Google Scholar 

  • A. Marcowith, M. Lemoine, G. Pelletier, Turbulence and particle acceleration in collisionless supernovae remnant shocks. II. Cosmic-ray transport. Astron. Astrophys. 453, 193–202 (2006). arXiv:astro-ph/0603462

    ADS  MATH  Google Scholar 

  • F. Massi, C. Codella, J. Brand, L. di Fabrizio et al., The low-mass YSO CB230-A: investigating the protostar and its jet with NIR spectroscopy and Spitzer observations. Astron. Astrophys. 490, 1079–1091 (2008). arXiv:0809.1591

    ADS  Google Scholar 

  • D.J. McComas, F. Allegrini, P. Bochsler, M. Bzowski et al., Global observations of the interstellar interaction from the Interstellar Boundary Explorer (IBEX). Science 326, 959 (2009)

    ADS  Google Scholar 

  • C.F. McKee, D.J. Hollenbach, Interstellar shock waves. Annu. Rev. Astron. Astrophys. 18, 219–262 (1980)

    ADS  Google Scholar 

  • D. Mihalas, B.W. Mihalas, Foundations of Radiation Hydrodynamics (Oxford University Press, New York, 1984), 731 p.

    MATH  Google Scholar 

  • M. Mithaiwala, L. Rudakov, C. Crabtree, G. Ganguli, Co-existence of Whistler waves with kinetic Alfven wave turbulence for the high-beta solar wind plasma. Phys. Plasmas 19(10), 102902 (2012). arXiv:1208.0623

    ADS  Google Scholar 

  • A.S. Monin, A.M. Iaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2 (1975), revised and enlarged edition

    Google Scholar 

  • G. Morlino, R. Bandiera, P. Blasi, E. Amato, Collisionless shocks in a partially ionized medium. II. Balmer emission. Astrophys. J. 760, 137 (2012a). arXiv:1210.4296

    ADS  Google Scholar 

  • G. Morlino, P. Blasi, R. Bandiera, E. Amato et al., Collisionless shocks in a partially ionized medium: III. Efficient cosmic ray acceleration (2012b). arXiv:1211.6148

  • J.A. Morse, W.P. Blair, M.A. Dopita, J.P. Hughes et al., Hubble space telescope observations of oxygen-rich supernova remnants in the Magellanic cloud. I. Narrow-band imaging of N132D in the LMC. Astron. ž. 112, 509 (1996)

    ADS  Google Scholar 

  • T. Nakano, Contraction of magnetic interstellar clouds. Fundam. Cosm. Phys. 9, 139–231 (1984)

    ADS  Google Scholar 

  • S. Nikolić, G. van de Ven, K. Heng, D. Kupko et al., An integral view of fast shocks around Supernova 1006 (2013). arXiv:1302.4328

  • L. O’C Drury, P. Duffy, J.G. Kirk, Limits on diffusive shock acceleration in dense and incompletely ionised media. Astron. Astrophys. 309, 1002–1010 (1996). arXiv:astro-ph/9510066

    ADS  Google Scholar 

  • Y. Ohira, Effects of leakage neutral particles on shocks. Astrophys. J. 758, 97 (2012). arXiv:1202.4620

    ADS  Google Scholar 

  • Y. Ohira, F. Takahara, Effects of neutral particles on modified shocks at supernova remnants. Astrophys. J. 721, L43–L47 (2010). arXiv:0912.2859

    ADS  Google Scholar 

  • Y. Ohira, T. Terasawa, F. Takahara, Plasma instabilities as a result of charge exchange in the downstream region of supernova remnant shocks. Astrophys. J. 703, L59–L62 (2009). arXiv:0908.3369

    ADS  Google Scholar 

  • A. Petrosyan, A. Balogh, M.L. Goldstein, J. Léorat et al., Turbulence in the solar atmosphere and solar wind. Space Sci. Rev. 156, 135–238 (2010)

    ADS  Google Scholar 

  • V. Pierrard, M. Lazar, Kappa distributions: theory and applications in space plasmas. Sol. Phys. 267, 153–174 (2010). arXiv:1003.3532

    ADS  Google Scholar 

  • E. Quataert, Particle heating by Alfvenic turbulence in hot accretion flows. Astrophys. J. 500, 978 (1998). arXiv:astro-ph/9710127

    ADS  Google Scholar 

  • E. Quataert, A. Gruzinov, Turbulence and particle heating in advection-dominated accretion flows. Astrophys. J. 520, 248–255 (1999). arXiv:astro-ph/9803112

    ADS  Google Scholar 

  • C.E. Rakowski, J.M. Laming, P. Ghavamian, The heating of thermal electrons in fast collisionless shocks: the integral role of cosmic rays. Astrophys. J. 684, 348–357 (2008). arXiv:0805.3084

    ADS  Google Scholar 

  • J.J. Ramos, Fluid and drift-kinetic description of a magnetized plasma with low collisionality and slow dynamics orderings. II. Ion theory. Phys. Plasmas 18(10), 102–506 (2011)

    Google Scholar 

  • J.C. Raymond, Shock waves in the interstellar medium. Astrophys. J. Suppl. Ser. 39, 1–27 (1979)

    ADS  Google Scholar 

  • J.C. Raymond, Supernova-remnant shock waves close up. Publ. Astron. Soc. Pac. 103, 781–786 (1991)

    ADS  Google Scholar 

  • J.C. Raymond, L. Hartmann, P. Hartigan, Improved bow shock models for Herbig-Haro objects—application to HH 2A-prime. Astrophys. J. 326, 323–333 (1988a)

    ADS  Google Scholar 

  • J.C. Raymond, J.J. Hester, D. Cox, W.P. Blair et al., Spatial and spectral interpretation of a bright filament in the Cygnus Loop. Astrophys. J. 324, 869–892 (1988b)

    ADS  Google Scholar 

  • J.C. Raymond, P.A. Isenberg, J.M. Laming, Non-Maxwellian proton velocity distributions in nonradiative shocks. Astrophys. J. 682, 408–415 (2008). arXiv:0804.3808

    ADS  Google Scholar 

  • J.C. Raymond, P.F. Winkler, W.P. Blair, J.J. Lee et al., Non-Maxwellian Hα profiles in Tycho’s supernova remnant. Astrophys. J. 712, 901–907 (2010)

    ADS  Google Scholar 

  • J.C. Raymond, J. Vink, E.A. Helder, A. de Laat, Effects of neutral hydrogen on cosmic-ray precursors in supernova remnant shock waves. Astrophys. J. 731, L14 (2011). arXiv:1103.3211

    ADS  Google Scholar 

  • W.T. Reach, J. Rho, T.H. Jarrett, Shocked molecular gas in the supernova remnants W28 and W44: near-infrared and millimeter-wave observations. Astrophys. J. 618, 297–320 (2005)

    ADS  Google Scholar 

  • B. Reville, J.G. Kirk, P. Duffy, S. O’Sullivan, A cosmic ray current-driven instability in partially ionised media. Astron. Astrophys. 475, 435–439 (2007). arXiv:0707.3743

    ADS  MATH  Google Scholar 

  • B. Reville, J.G. Kirk, P. Duffy, S. O’Sullivan, Environmental limits on the nonresonant cosmic-ray current-driven instability. Int. J. Mod. Phys. D 17, 1795–1801 (2008)

    ADS  MATH  Google Scholar 

  • F. Sahraoui, M.L. Goldstein, P. Robert, Y.V. Khotyaintsev, Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102(23), 231102 (2009)

    ADS  Google Scholar 

  • S. Saito, S.P. Gary, Beta dependence of electron heating in decaying Whistler turbulence: particle-in-cell simulations. Phys. Plasmas 19, 012312 (2012)

    ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, W. Dorland, G.W. Hammett et al., Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. Ser. 182, 310–377 (2009). arXiv:0704.0044

    ADS  Google Scholar 

  • K.M. Schure, A.R. Bell, L. O’C Drury, A.M. Bykov, Diffusive shock acceleration and magnetic field amplification. Space Sci. Rev. 173, 491–519 (2012). arXiv:1203.1637

    ADS  Google Scholar 

  • J.M. Shull, C.F. McKee, Theoretical models of interstellar shocks. I—Radiative transfer and UV precursors. Astrophys. J. 227, 131–149 (1979)

    ADS  Google Scholar 

  • J. Skilling, Cosmic ray streaming. I—Effect of Alfven waves on particles. Mon. Not. R. Astron. Soc. 172, 557–566 (1975)

    ADS  Google Scholar 

  • R.C. Smith, J.C. Raymond, J.M. Laming, High-resolution spectroscopy of Balmer-dominated shocks in the Large Magellanic Cloud. Astrophys. J. 420, 286–293 (1994)

    ADS  Google Scholar 

  • J. Sollerman, P. Ghavamian, P. Lundqvist, R.C. Smith, High resolution spectroscopy of Balmer-dominated shocks in the RCW 86, Kepler and SN 1006 supernova remnants. Astron. Astrophys. 407, 249–257 (2003). arXiv:astro-ph/0306196

    ADS  Google Scholar 

  • L. Spitzer, Physical Processes in the Interstellar Medium (1978)

    Google Scholar 

  • V. Tatischeff, M. Hernanz, Evidence for nonlinear diffusive shock acceleration of cosmic rays in the 2006 outburst of the recurrent Nova RS Ophiuchi. Astrophys. J. 663, L101–L104 (2007). arXiv:0705.4422

    ADS  Google Scholar 

  • O. TeÅŸileanu, S. Massaglia, A. Mignone, G. Bodo et al., Time-dependent MHD shocks and line intensity ratios in the HH 30 jet: a focus on cooling function and numerical resolution. Astron. Astrophys. 507, 581–588 (2009). arXiv:0910.1225

    ADS  Google Scholar 

  • Y. Uchiyama, R.D. Blandford, S. Funk, H. Tajima et al., Gamma-ray emission from crushed clouds in supernova remnants. Astrophys. J. 723, L122–L126 (2010)

    ADS  Google Scholar 

  • M. van Adelsberg, K. Heng, R. McCray, J.C. Raymond, Spatial structure and collisionless electron heating in Balmer-dominated shocks. Astrophys. J. 689, 1089–1104 (2008). arXiv:0803.2521

    ADS  Google Scholar 

  • M.K. Verma, Statistical theory of magnetohydrodynamic turbulence: recent results. Phys. Rep. 401, 229–380 (2004). arXiv:nlin/0404043

    ADS  MathSciNet  Google Scholar 

  • J. Vink, Supernova remnants: the X-ray perspective. Astron. Astrophys. Rev. 20, 49 (2012). arXiv:1112.0576

    ADS  Google Scholar 

  • J. Vink, R. Yamazaki, E.A. Helder, K.M. Schure, The relation between post-shock temperature, cosmic-ray pressure, and cosmic-ray escape for non-relativistic shocks. Astrophys. J. 722, 1727–1734 (2010). arXiv:1008.4367

    ADS  Google Scholar 

  • A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Turbulence dissipation and particle injection in nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys. J. 688, 1084–1101 (2008). arXiv:0807.1321

    ADS  Google Scholar 

  • A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Spectra of magnetic fluctuations and relativistic particles produced by a nonresonant wave instability in supernova remnant shocks. Astrophys. J. 703, L29–L32 (2009). arXiv:0908.2602

    ADS  Google Scholar 

  • H.J. Völk, G.E. Morfill, M.A. Forman, The effect of losses on acceleration of energetic particles by diffusive scattering through shock waves. Astrophys. J. 249, 161–175 (1981)

    ADS  Google Scholar 

  • A.Y. Wagner, J.J. Lee, J.C. Raymond, T.W. Hartquist et al., A cosmic-ray precursor model for a Balmer-dominated shock in Tycho’s supernova remnant. Astrophys. J. 690, 1412–1423 (2009). arXiv:0809.2504

    ADS  Google Scholar 

  • L.L. Williams, G.P. Zank, Effect of magnetic field geometry on the wave signature of the pickup of interstellar neutrals. J. Geophys. Res. 99, 19229 (1994)

    ADS  Google Scholar 

  • Y. Zhou, Renormalization group theory for fluid and plasma turbulence. Phys. Rep. 488, 1–49 (2010)

    ADS  MathSciNet  Google Scholar 

  • Y. Zhou, W.H. Matthaeus, Models of inertial range spectra of interplanetary magnetohydrodynamic turbulence. J. Geophys. Res. 95, 14881–14892 (1990)

    ADS  Google Scholar 

  • E.G. Zweibel, J.M. Shull, Confinement of cosmic rays in molecular clouds. Astrophys. J. 259, 859–868 (1982)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bykov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bykov, A.M., Malkov, M.A., Raymond, J.C., Krassilchtchikov, A.M., Vladimirov, A.E. (2013). Collisionless Shocks in Partly Ionized Plasma with Cosmic Rays: Microphysics of Non-thermal Components. In: Balogh, A., Bykov, A., Cargill, P., Dendy, R., Dudok de Wit, T., Raymond, J. (eds) Microphysics of Cosmic Plasmas. Space Sciences Series of ISSI, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7413-6_19

Download citation

Publish with us

Policies and ethics