Skip to main content

Calcium-Binding Proteins Define Subpopulations of Interneurons in Cingulate Cortex

  • Chapter
Neurobiology of Cingulate Cortex and Limbic Thalamus

Abstract

Calcium-binding proteins are intracellular calcium acceptors which belong to two different families: the EF-hand proteins and the annexins. Annexins are characterized by proteins that bind calcium in the presence of phospholipid-containing membranes. The EF-hand proteins, which is the topic of this review, consist of proteins showing a general structural principle in the calcium-binding domain called the EF-hand (Kretsinger, 1981). They are composed of a stretch of amino acids having a helix-loop-helix structure. The EF-hand family of calcium-binding proteins contains approximately 30 to 40 different proteins (most of them calcium-modulated), of which several are found in the central nervous system. The EF-hand proteins may function either as “triggers, ” starting a cascade of reactions, or as calcium “buffers, ” decreasing the free cytoplasmic concentration of this ion (Dalgarno et al., 1984). The prototype of a trigger protein is the ubiquitous calmodulin that activates at least 20 different enzymes. The buffer proteins represent a more passive system responsible for decreasing the amplitude of calcium signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akil M, Lewis DA (1992): Differential distribution of parvalbumin-immunoreactive pericellular clusters of terminal boutons in developing and adult monkey neocortex. Exp Neurol 115:239–249

    Article  Google Scholar 

  • Arai H, Noguchi H, Makino Y, Kosaka K, Heizmann CW, Iizuka R (1991): Parvalbumin-immunoreactive neurons in the cortex of Pick’s disease. J Neurol 238:200–202

    Article  Google Scholar 

  • Baleydier C, Mauguière F (1980): The duality of the cingulate gyrus. Neuroanatomical study and functional hypothesis. Brain 103:525–554

    Article  Google Scholar 

  • Baleydier C, Mauguière F (1985): Anatomical evidence for medial pulvinar connections with the posterior cingulate cortex, the retrosplenial area, and the posterior parahippocampal gyrus in monkeys. J Comp Neurol 232:219–228

    Article  Google Scholar 

  • Baleydier C, Mauguière F (1987): Network organization of the connectivity between parietal area 7, posterior cingulate cortex and medial pulvinar nucleus: A double fluorescent tracer study in monkey. Exp Brain Res 66:385–393

    Article  Google Scholar 

  • Benson DL, Isackson PJ, Jones EG (1991): In situ hybridization reveals VIP precursor mRNA-containing neurons in monkey and rat neocortex. Mol Brain Res 9:169–174

    Article  Google Scholar 

  • Blümcke I, Hof PR, Morrison JH, Celio MR (1990): Distribution of parvalbumin immuno-reactivity in the visual cortex of Old World monkeys and humans. J Comp Neurol 301:417–432

    Article  Google Scholar 

  • Blümcke I, Hof PR, Morrison JH, Celio MR (1991): Parvalbumin in the monkey striate cortex: A quantitative immunoelectron-micros-copy study. Brain Res 554:237–243

    Article  Google Scholar 

  • Braak H (1976): A primitive gigantopyramidal field buried in the depth of the cingulate sulcus of the human brain. Brain Res 109:219–233

    Article  Google Scholar 

  • Braun K (1990): Calcium-binding proteins in the avian and mammalian central nervous system: Localization, development, and possible functions. Prog Histochem Cytochem 21:1–62

    Article  Google Scholar 

  • Brodmann K (1909): Vergleichende Lokalisa-tionslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth

    Google Scholar 

  • Campbell MJ, Hof PR, Morrison JH (1991): A subpopulation of primate corticocortical neurons is distinguished by somatodendritic distribution of neurofilament protein. Brain Res 539:133–136

    Article  Google Scholar 

  • Campbell MJ, Lewis DA, Benoit R, Morrison JH (1987): Regional heterogeneity in the distribution of somatostatin-28 and somatostatin-281_12-immunoreactive profiles in monkey neocortex. J Neurosci 7:1133–1144

    Google Scholar 

  • Celio MR (1986): Parvalbumin in most gamma-aminobutyric-acid-containing neurons of the cat cerebral cortex. Science 231:995–997

    Article  Google Scholar 

  • Celio MR (1990): Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    Article  Google Scholar 

  • Celio MR, Baier W, de Viragh P, Schärer E, Gerday C (1988): Monoclonal antibodies directed against the calcium binding protein parvalbumin. Cell Calcium 9:81–86

    Article  Google Scholar 

  • Celio MR, Baier W, Schärer L, Gregersen HJ, de Viragh PA, Norman AW (1990): Monoclonal antibodies directed against the calcium binding protein calbindin D-28k. Cell Calcium 11:599–602

    Article  Google Scholar 

  • Celio MR, Heizmann CW (1981): Calcium-binding protein parvalbumin as a neuronal marker. Nature (London) 293:300–302

    Article  Google Scholar 

  • Cipolloni PB, Pandya DN (1991): Golgi, histo-chemical, and immunocytochemical analyses of the neurons of auditory-related cortices of the rhesus monkey. Exp Neurol 114:104–122

    Article  Google Scholar 

  • Cudkowicz M, Kowall NW (1990): Parvalbumin immunoreactive neurons are resistant to degeneration in Huntington’s disease cerebral cortex. J Neuropathol Exp Neurol 49:345

    Article  Google Scholar 

  • Dalgarno D, Klevit RE, Levine BA, Williams RJP (1984): The calcium receptor and trigger. Trends Pharmacol Sci 4:266–271

    Article  Google Scholar 

  • DeFelipe J, Hendry SHC, Jones EG (1989a): Visualization of chandelier cells axons by parvalbumin immunoreactivity in monkey cerebral cortex. Proc Natl Acad Sci USA 86:2093–2097

    Article  Google Scholar 

  • DeFelipe J, Hendry SHC, Jones EG (1989b): Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Res 503:49–54

    Article  Google Scholar 

  • DeFelipe J, Jones EG (1991): Parvalbumin immunoreactivity reveals layer IV of monkey cerebral cortex as a mosaic of microzones of thalamic afferent terminations. Brain Res 562:39–47

    Article  Google Scholar 

  • DeFelipe J, Jones EG (1992): High-resolution light and electron microscopic immunocyto-chemistry of colocalized GABA and calbindin D-28k in somata and double bouquet cell axons of monkey somatosensory cortex. Eur J Neu-rosci 4:46–60

    Article  Google Scholar 

  • De Lima AD, Morrison JH (1990): Ultrastructural analysis of somatostatin-immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey. J Comp Neurol 283:212–227

    Article  Google Scholar 

  • Demeulemeester H, Vandesande F, Orban GA, Brandon C, Vanderhaeghen JJ (1988): Heterogeneity of GABAergic cells in cat cerebral cortex. J Neurosci 8:988–1000

    Google Scholar 

  • Dum RP, Strick PL (1991): The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11:667–689

    Google Scholar 

  • Eckenstein F, Baughman RW (1984): Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide. Nature (London) 309:153–155

    Article  Google Scholar 

  • Gabriel M, Kubota Y, Sparenborg S, Straube K, Vogt BA (1991): Effects of cingulate cortical lesions on avoidance learning and training-induced unit activity in rabbits. Exp Brain Res 86:585–600

    Article  Google Scholar 

  • Gaspar P, Duyckaerts C, Febvret A, Benoit R, Beck B, Berger B (1989): Subpopulations of somatostatin 28-immunoreactive neurons display different vulnerability in senile dementia of the Alzheimer type. Brain Res 490:1–13

    Article  Google Scholar 

  • Heizmann CW (1984): Parvalbumin, an intracellular calcium-binding protein, distribution properties, and possible roles in mammalian cells. Experientia 40:910–921

    Article  Google Scholar 

  • Hendry SHC, Jones EG, Emson PC, Lawson DEM, Heizmann CW, Streit P (1989): Two classes of cortical GABA neurons defined by differential calcium binding protein immuno-reactivities. Exp Brain Res 76:467–472

    Article  Google Scholar 

  • Hof PR, Bouras C, Constantinidis J, Morrison JH (1989): Balint’s syndrome in Alzheimer’s disease: Specific disruption of the occipitoparietal visual pathway. Brain Res 493:368–375

    Article  Google Scholar 

  • Hof PR, Bouras C, Constantinidis J, Morrison JH (1990a): Selective disconnection of specific visual association pathways in cases of Alzheimer’s disease presenting with Balint’s syndrome. J Neuropathol Exp Neurol 49:168–184

    Article  Google Scholar 

  • Hof PR, Cox K, Morrison JH (1990b): Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex. J Comp Neurol 301:44–54

    Article  Google Scholar 

  • Hof PR, Cox K, Young WG, Celio MR, Rogers J, Morrison JH (1991a): Parvalbumin-immunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer’s disease. J Neuropathol Exp Neurol 50:451–462

    Article  Google Scholar 

  • Hof PR, Hsu P, Morrison JH (1991b): Quantitative chemoarchitectonic analysis of the cingulate cortex in Alzheimer’s disease. Soc Neurosci Abstr 17:693

    Google Scholar 

  • Hof PR, Morrison JH (1990): Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: II. Primary and secondary visual cortex. J Comp Neurol 301:55–64

    Article  Google Scholar 

  • Hof PR, Morrison JH (1991): Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer’s disease. Exp Neurol 111:293–301

    Article  Google Scholar 

  • Hof PR, Nimchinsky EA (1992): Regional distribution of neurofilament and calcium-binding proteins in the cingulate cortex of the macaque monkey. Cerebral Cortex 2:456–467

    Article  Google Scholar 

  • Hutchins KD, Martino AM, Strick PL (1988): Corticospinal projections from the medial wall of the hemisphere. Exp Brain Res 71:667–672

    Article  Google Scholar 

  • Iacopino AM, Christakos S (1990): Specific reauction of calcium binding protein (28-kilodalton calbindin D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci USA 87:4078–4082

    Article  Google Scholar 

  • Jacobowitz DM, Winsky L (1991): Immunocyto-chemical localization of calretinin in the fore-brain of the rat. J Comp Neurol 304:198–218

    Article  Google Scholar 

  • Jande SS, Maler L, Lawson DEM (1981): Immu-nohistochemical localization of vitamin D-dependent calcium binding protein in brain. Nature (London) 294:765–767

    Article  Google Scholar 

  • Jones AKP, Brown WD, Friston KJ, Qi LY, Frackowiak RSJ (1991): Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc London, Ser B 244:39–44

    Article  Google Scholar 

  • Jones EG, Hendry SHC (1989): Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur J Neurosci 1:222–246

    Article  Google Scholar 

  • Jürgens U (1983): Afferent fibers to the cingular vocalization region in the squirrel monkey. Exp Neurol 80:395–409

    Article  Google Scholar 

  • Kobayashi K, Emson PC, Mountjoy CQ, Thornton SN, Lawson DEM, Mann DMA (1990): Cerebral cortical calbindin D-28k and parvalbumin neurones in Down’s syndrome. Neurosci Lett 113:17–22

    Article  Google Scholar 

  • Kosaka T, Heizmann CW, Tateishi K, Hamaoka Y, Hama K (1987): An aspect of the organizational principle of the gamma aminobutyric acidergic system in the cerebral cortex. Brain Res 409:403–408

    Article  Google Scholar 

  • Kretsinger RH (1981): Mechanisms of selective signalling by calcium. Neurosci Res Prog Bull 19:211–328

    Google Scholar 

  • Lewis DA, Lund JS (1990): Heterogeneity of chandelier neurons in monkey neocortex: Cor-ticotropin-releasing factor and parvalbumin-immunoreactive populations. J Comp Neurol 293:599–615

    Article  Google Scholar 

  • Lewis DA, Lund JS, Akil M, Jacobowitz DM (1991): Distribution of calretinin immunoreactivity in monkey cerebral cortex. Soc Neurosci Abstr 17:1583

    Google Scholar 

  • Luppino G, Matelli M, Carmada RM, Gallese V, Rizzolatti G (1991): Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey. J Comp Neurol 311:463–482

    Article  Google Scholar 

  • Marin-Padilla M (1984): Neurons of layers I—A developmental analysis. In: Cerebral Cortex, Peters A, Jones EG, eds. New York: Plenum, Vol. l, pp 447–478

    Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1991): Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462

    Article  Google Scholar 

  • Mattson MP, Rychlik B, Chu C, Christakos S (1991): Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron 6:41–51

    Article  Google Scholar 

  • Morrison JH, Hof PR, Kupferschmid SB, Good PF, Janssen W, Archin N (1991): Relationships between connectivity and cytoskeletal profile of corticocortically-projecting neurons. Soc Neurosci Abstr 17:1021

    Google Scholar 

  • Morrison JH, Magistretti PJ, Benoit R, Bloom FE (1984): The distribution and morphological characteristics of the intracortical VIP-positive cell: An immunohistochemical analysis. Brain Res 292:269–282

    Article  Google Scholar 

  • Morrison JH, Rogers J, Scherr S, Benoit R, Bloom FE (1985): Somatostatin immunoreactivity in neuritic plaques of Alzheimer’s patients. Nature (London) 314:90–92

    Article  Google Scholar 

  • Muakkassa KF, Strick PL (1979): Frontal lobe inputs to primate motor cortex: Evidence for four somatotopically organized “premotor” areas. Brain Res 177:176–182

    Article  Google Scholar 

  • Mugnaini E, Oertel WH (1985): An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. In: Handbook of Chemical Neuroanatomy, Björklund A, Hökfelt T, eds. Amsterdam: Elsevier, Vol. 4, pp 436–608

    Google Scholar 

  • Ouimet CC (1991): DARPP-32, a dopamine and cyclic AMP-regulated phosphoprotein, is present in corticothalamic neurons of the rat cingulate cortex. Brain Res 562:85–92

    Article  Google Scholar 

  • Pandya DN, Van Hoesen GW, Domesick VB (1973): A cingulo-amygdaloid projection in the rhesus monkey. Brain Res 61:369–373

    Article  Google Scholar 

  • Pandya DN, Van Hoesen GW, Mesulam MM (1981): Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res 42:319–330

    Google Scholar 

  • Pardo JV, Fox PT, Raichle ME (1991): Localization of a human system for sustained attention by positron emission tomography. Nature (London) 349:61–64

    Article  Google Scholar 

  • Pardo JV, Pardo PJ, Janer KW, Raichle ME (1990): The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci USA 87:256–259

    Article  Google Scholar 

  • Résibois A, Rogers JH (1992): Calretinin in rat brain: An immunohistochemical study. Neuroscience 46:101–134

    Article  Google Scholar 

  • Ribak CE, Nitsch R, Seress L (1990): Proportion of parvalbumin-positive basket cells in the GA-BAergic innervation of pyramidal and granule cells of the rat hippocampal formation. J Comp Neurol 300:449–461

    Article  Google Scholar 

  • Rogers JH (1987): Calretinin: A gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105:1343–1353

    Article  Google Scholar 

  • Rogers JH (1989a): Two calcium-binding proteins mark chick sensory neurons. Neuroscience 31:697–709

    Article  Google Scholar 

  • Rogers JH (1989b): Immunoreactivity for calretinin and other calcium binding proteins in cerebellum. Neuroscience 31:711 – 721

    Article  Google Scholar 

  • Rogers JH (1991): Calretinin. In: Novel Calcium-Binding Proteins, Heizmann CW, ed. Heidelberg: Springer, pp 251–276

    Chapter  Google Scholar 

  • Rogers JH (1992): Immunohistochemical markers in rat cortex: Colocalization of calretinin and calbindin-D28 with neuropeptides and GABA. Brain Res 587:147–157

    Article  Google Scholar 

  • Séquier JM, Hunziker W, Andressen C, Celio MR (1990): Calbindin D-28k: Protein and mRNA localization in the rat brain. Eur J Neurosci 2:1118–1126

    Article  Google Scholar 

  • Seress L, Gulyás AI, Freund TF (1991): Paralbumin- and calbindin D28k-immunoreactive neurons in the hippocampal formation of the macaque monkey. J Comp Neurol 313:162–177

    Article  Google Scholar 

  • Shima K, Aya K, Mushiake H, Inase M, Aizawa H, Tanji J (1991): Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements. J Neurophysiol 65:188–202

    Google Scholar 

  • Talbot JD, Marrett S, Evans AC, Meyer E, Bushneil MC, Duncan GH (1991): Multiple representation of pain in human cerebral cortex. Science 251:1355–1388

    Article  Google Scholar 

  • Van Brederode JF, Mulligan KA, Hendrickson AE (1990): Calcium binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex. J Comp Neurol 298:1–22

    Article  Google Scholar 

  • Vilensky JA, Van Hoesen GW (1981): Corticopontine projections from the cingulate cortex in the rhesus monkey. Brain Res 205:391–395

    Article  Google Scholar 

  • Vogt BA (1976): Retrosplenial cortex in the rhesus monkey: A cytoarchitectonic and Golgi study. J Comp Neurol 169:63–98

    Article  Google Scholar 

  • Vogt BA (1985): Cingulate cortex. In: Cerebral Cortex, Peters A, Jones EG, eds. New York: Plenum, Vol. 4, pp 89–149

    Google Scholar 

  • Vogt BA (1991): The role of layer I in cortical function. In: Cerebral Cortex, Peters A, Jones EG, eds. New York: Plenum, Vol. 9, pp 49–80

    Google Scholar 

  • Vogt BA, Barbas H (1988): Structure and connections of the cingulate vocalization region in the rhesus monkey. In: The Physiological Control of Mammalian Vocalization, Newman JD, ed. New York: Plenum, pp 203–225

    Chapter  Google Scholar 

  • Vogt BA, Pandya DN (1987): Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol 262:271–289

    Article  Google Scholar 

  • Vogt BA, Pandya DN, Rosene DL (1987): Cingulate cortex of the rhesus monkey: I. Cytoarchi-tecture and thalamic afferents. J Comp Neurol 262:256–270

    Article  Google Scholar 

  • Vogt BA, Peters A (1981): Form and distribution of neurons in rat cingulate cortex: Areas 32, 24, and 29. J Comp Neurol 195:603–625

    Article  Google Scholar 

  • Vogt BA, Rosene DL, Pandya DN (1979): Thalamic and cortical Afferents differentiate anterior from posterior cingulate cortex in the monkey. Science 204:205–207

    Article  Google Scholar 

  • Vogt BA, Sikes RW, Swadlow HA, Weyand TG (1986): Rabbit cingulate cortex: Cytoarchitec-ture, physiological border with visual cortex, and afferent cortical connections of visual, motor, postsubicular and intracingulate origin. J Comp Neurol 248:74–94

    Article  Google Scholar 

  • Vogt BA, Van Hoesen GW, Vogt LJ (1990): Laminar distribution of neuron degeneration in posterior cingulate cortex in Alzheimer’s disease. Acta Neuropathol 80:581–589

    Article  Google Scholar 

  • von Economo C (1927): L’architecture cellulaire normale de Yécorce cérébrale. Paris: Masson

    Google Scholar 

  • Wassermann RH, Taylor AN (1966) Vitamin D-induced calcium binding protein in chick intestinal mucosa. Science 152:791–79

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hof, P.R., Lüth, HJ., Rogers, J.H., Celio, M.R. (1993). Calcium-Binding Proteins Define Subpopulations of Interneurons in Cingulate Cortex. In: Vogt, B.A., Gabriel, M. (eds) Neurobiology of Cingulate Cortex and Limbic Thalamus. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6704-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6704-6_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6706-0

  • Online ISBN: 978-1-4899-6704-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics