Skip to main content

Allometric Considerations of the Adult Mammalian Brain, with Special Emphasis on Primates

  • Chapter
Size and Scaling in Primate Biology

Part of the book series: Advances in Primatology ((AIPR))

Abstract

Allometric studies of the brain investigate differences in the size of the total brain or its subdivisions and associate those differences with the size of the organism or, for its parts, with the size of the brain. Two quantitative features are examined in these studies: (1) the intercepts, or how big a part is in relation to the whole, and (2) the slope, or how the two features scale together. Over the past 100 years comparisons of adult vertebrates have demonstrated that taxonomic groups differ according to the amount of brain per body weight and that brain weights do not show as much enlargement as do body weights (negative allometry). Although many studies have covered all vertebrates, only mammalian data will be discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allman, J. 1982. Reconstructing the evolution of the brain in primates through the use of comparative neurophysiological and neuroanatomical data, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds., pp. 13–28, Plenum Press, New York.

    Google Scholar 

  • Andy, O. J., and Stephan, M. 1968. The septum in the human brain. J. Comp. Neurol. 133: 388 – 409.

    Google Scholar 

  • Armstrong, E. 1979. A quantitative comparison of the hominoid thalamus: I. Specific sensory relay nuclei. Am. J. Phys. Anthropol. 52: 405–419.

    Google Scholar 

  • Armstrong, E. 1980a. A quantitative comparison of the hominoid thalamus. II. Limbic nuclei anterior principalis and lateralis dorsalis. Am. J. Phys. Anthropol. 52: 43–54.

    PubMed  CAS  Google Scholar 

  • Armstrong, E. 1980b. A quantitative comparison of the hominoid thalamus. III. A motor substrate—The ventrolateral complex. Am. J. Phys. Anthropol. 52: 405–419.

    Google Scholar 

  • Armstrong, E. 1981. A quantitative comparison of the hominoid thalamus. IV. The pulvinar and lateral posterior complex. Am. J. Phys. Anthropol. 55: 369–383.

    PubMed  CAS  Google Scholar 

  • Armstrong, E. 1982a. Mosaic evolution in the primate brain: Differences and similarities in the hominoid thalamus, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 131–161, Plenum Press, New York.

    Google Scholar 

  • Armstrong, E. 1982£. An analysis of brain allometry: Consideration of the cerebral metabolic demand. Am. J. Phys. Anthropol. 57: 167–168.

    Google Scholar 

  • Armstrong, E. 1982c. A look at relative brain size in mammals. Neurosci. Lett. 34: 101–104.

    PubMed  CAS  Google Scholar 

  • Armstrong, E. 1983. Metabolism and relative brain size. Science 220: 1302–1304.

    PubMed  CAS  Google Scholar 

  • Armstrong, E. and St. Onge, M. 1981. Evolution of the human anterior thalamic complex: Results of morphometric and allometric analyses. Soc. Neurosci. 7: 755.

    Google Scholar 

  • Baron, G. 1979. Quantitative changes in the fundamental structural pattern of the diencephalon among primates and insectivores. Folia Primatol. 31: 74–105.

    PubMed  CAS  Google Scholar 

  • Bauchot, R. 1978. Encephalization in vertebrates. Brain Behav. Evol. 15: 1–18.

    PubMed  CAS  Google Scholar 

  • Bauchot, R. 1982. Brain organization and taxonomic relationships in insectivora and primates, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 163 – 175, Plenum Press, New York.

    Google Scholar 

  • Bauchot, R., and Diagne, M. 1973. La croissance encéphalique chez Hemicentetes semispinosus (Insectivora, Tenrecidae). Mammalia 37: 468–477.

    Google Scholar 

  • Bauchot, R., and Stephan, H. 1966. Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia 30: 160–196.

    Google Scholar 

  • Bauchot, R., and Stephan, H. 1969. Encéphalisation et niveau évolutif chez les simiens. Mammalia 33: 225–275.

    Google Scholar 

  • Beckman, A. L., and Stanton, T. L. 1976. Changes in CNS responsiveness during hibernation. Am.]. Physiol. 231: 810–816.

    CAS  Google Scholar 

  • Bok, S. T. 1959. Histonomy of the Cerebral Cortex, Elsevier, Amsterdam.

    Google Scholar 

  • Bok, S. T., Kip, M. J., and Taalman, V. E. 1939. The size of the body and the size and number of the nerve cells in the cerebral cortex. Acta Neerl. Morphol. Norm. Pathol. 3: 1–22.

    Google Scholar 

  • Braitenberg, V. 1977. On the Texture of Brains, Springer-Verlag, New York.

    Google Scholar 

  • Brandt, A. 1867. Sur le rapport du poids du cerveau à celui dur corps chez différents animaux. Bull. Soc. Imp. Nat. Moscow 40: 525–543.

    Google Scholar 

  • Brody, S. 1945. Bioenergetics and Growth, Hafner, New York.

    Google Scholar 

  • Bronson, R. T. 1979. Brain weight—body weight scaling in breeds of dogs and cats. Brain Behav. Evol. 16: 227–236.

    PubMed  CAS  Google Scholar 

  • Bruesch, S. R., and Arey, L. B. 1942. The number of myelinated and unmyelinated fibers in the optic nerve of vertebrates. J. Comp. Neurol.77: 631–665.

    Google Scholar 

  • Bruhn, J. M. 1934. The respiratory metabolism of infrahuman primates. Am. J. Physiol. 110: 477 – 484.

    CAS  Google Scholar 

  • Brummelkamp, R. 1939. Das sprungweise Wachstum der kernmasse. Acta Neerl. Morphol. Norm. Pathol. 2: 177–188.

    Google Scholar 

  • Buchweitz, E., Sinha, A. K., and Weiss, H. R. 1980. Cerebral regional oxygen consumption and supply in anesthetized cat. Science 209: 499–501.

    Google Scholar 

  • Campbell, C. B. G. 1982. Some questions and problems related to homology, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 1–11, Plenum Press, New York.

    Google Scholar 

  • Carpenter, M. B. 1976. Human Neuroanatomy, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Carter, H. B. 1965. Variation in the hair follicle population of the mammalian skin, in: Biology of the Skin and Hair Growth (A. G. Lyne and B. F. Short, eds.), pp. 25–33, Elsevier, New York.

    Google Scholar 

  • Clutton-Brock, T. H., and Harvey, P. H. 1980. Primates, brains and ecology. J. Zool. (Lond.) 190: 309–323.

    Google Scholar 

  • Compoint-Monmignaut, C. 1973. Anatomie comparée: L’encéphalisation chez les rongeurs. C. R. Acad. Sci. Paris 277: 861–863.

    CAS  Google Scholar 

  • Count, E. W. 1947. Brain and body weight in man: Their antecedents in growth and evolution. Ann. N.Y. Acad. Sci. 46: 993–1122.

    Google Scholar 

  • Crile, G. 1941. Intelligence, Power and Personality, McGraw-Hill, New York.

    Google Scholar 

  • Crile, G. W., and Quiring, D. P. 1940. A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J. Sci. 40: 219–259.

    Google Scholar 

  • Darwin, C. 1871. The Descent of Man and Selection in Relation to Sex, Murray, London.

    Google Scholar 

  • Dawson, T. J., and Hulbert, A. J. 1970. Standard metabolism, body temperature and surface areas of Australian marsupials. Am. J. Physiol. 218: 1233–1238.

    PubMed  CAS  Google Scholar 

  • Dhindsa, D. S., Hoversland, A. S., and Metcalfe, J. 1982. Comparative studies of the respiratory functions of mammalian blood. XII. Black galago (Galago crassicaudatus argintatus) and brown galago (Galago crassicaudatus crassicaudatus). Respir. Physiol. 47: 313–323.

    PubMed  CAS  Google Scholar 

  • Diamond, I. T. 1979. The subdivision of neocortex: A proposal to revise the traditional view of sensory, motor and association areas. Prog. Psychobiol. Physiol. Psychol. 8: 81–151.

    Google Scholar 

  • Diemer, N. H. 1978. Glial and neuronal changes in experimental hepatic encephalopathy: A quantitative morphological investigation. Acta Neurol. Scand. 58(Suppl. 71): 1–144.

    Google Scholar 

  • Dubois, E. 1897. Sur le rapport du poids de l’encéphale avec la grandeur du corps chez le mammifères. Bull. Soc. Anthropol. 8: 337–376.

    Google Scholar 

  • Dubois, E. 1914. Die gesetzmässige Beziehung von Gehirnmasse zu Körpergrösse bei den Wirbeltieren. Z. Morphol. Anthropol. 18: 323–350.

    Google Scholar 

  • Duffy, T. E., and Plum, F. 1981. Seizures, coma and major metabolic encephalopathies, in: Basic Neurochemistry (G.J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), pp. 681 – 718, Little, Brown, Boston.

    Google Scholar 

  • Eisenberg, J. F. 1981. The Mammalian Radiations, University of Chicago Press, Chicago.

    Google Scholar 

  • Eisenberg, J. F., and Wilson, D. 1978. Relative brain size and feeding strategies in the Chiroptera. Evolution 32: 740–751.

    Google Scholar 

  • Elias, H., and Schwartz, D. 1971. Cerebrocortical surface areas, volumes, lengths of gyri and their interdependence in mammals, including man. Z. Saeugetierkd. 36: 147–163.

    Google Scholar 

  • Falk, D. 1980. A reanalysis of the South African Australopithecine natural endocasts. Am. J. Phys. Anthropol. 53: 525–539.

    PubMed  CAS  Google Scholar 

  • Falk, D. 1981. Sulcal patterns of fossil Theropithecus baboons: Phylogenetic and functional implications. Int. J. Pnmatol. 2: 187.

    Google Scholar 

  • Falk, D. 1982a. Mapping fossil endocasts, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 217–226, Plenum Press, New York.

    Google Scholar 

  • Falk, D. 1982b. Allometry: Scaling of brain size, body surface area and body shapes in primates. Int. J. Primatol. 3: 281.

    Google Scholar 

  • Falk, D. 1983a. Cerebral cortices of East Asian hominids. Science 221: 1072–1074.

    PubMed  CAS  Google Scholar 

  • Falk, D. 19836. The Taung endocast: A reply to Holloway. Am. J. Phys. Anthropol. 60: 479–489.

    PubMed  CAS  Google Scholar 

  • Falk, D., and Waide, R. 1982. Allometry: Body shape as a key factor in brain evolution. Am. J. Phys. Anthropol. 57: 186.

    Google Scholar 

  • Frick, H. 1957. Betrachtungen über die Beziehungen zwischen körpergewicht und organgewicht. Z. Saugetierkd. 22: 193–207.

    Google Scholar 

  • Friede, R. L. 1954. Der quantitative Anteil der Glia an der Cortexentwicklung. Acta Anat. 20: 290–296.

    PubMed  CAS  Google Scholar 

  • Friede, R. L. 1963. The relationship of body size, nerve cell size, axon length and glial density in the cerebellum. Proc. Natl. Acad. Sci. U.S.A. 49: 187–193.

    PubMed  CAS  Google Scholar 

  • Galaburda, A. M., and Pandya, D. N. 1982. Role of architectonics and connections in the study of primate brain evolution, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 203–216, Plenum Press, New York.

    Google Scholar 

  • Geiger, A., and Magnes, J. 1947. The isolation of the cerebral circulation and the perfusion of the brain in the living cat. Am. J. Physiol. 149: 517–537.

    PubMed  CAS  Google Scholar 

  • Ghajar, J. B. G., Plum, F., and Duffy, T. E. 1982. Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats. J. Neurochem. 38: 397– 409.

    PubMed  CAS  Google Scholar 

  • Gilboe, D. D., and Betz, A. G. 1973. Oxygen uptake in the isolated canine brain. Am. J. Physiol. 224: 588–595.

    PubMed  CAS  Google Scholar 

  • Goffart, M. 1977. Hypométabolisme chez Aotus trivirgatus. (Primates Platyrhini, Cebidae). C. R. Séances Soc. Belge. Biol. 171: 1149–1152.

    CAS  Google Scholar 

  • Goodman, M., Snyder, F. N., Stimson, C. W., and Rankin, J. J. 1969. Phylogenetic changes in the proportions of two kinds of lactate dehydrogenase in primate brain regions. Brain Res. 14: 447–459.

    PubMed  CAS  Google Scholar 

  • Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41: 587–640.

    PubMed  CAS  Google Scholar 

  • Gould, S. J. 1975. Allometry in primates, with emphasis on scaling and the evolution of the brain, in: Approaches to Primate Paleobiology (Contrib. Primatol., Vol. 5, F. Szalay, ed.), pp. 244–292, S. Karger, Basel.

    Google Scholar 

  • Gurche, J. A. 1982. Early primate brain evolution, in: Primate Brain Evolution: Methods and Concepts, (E. Armstrong and D. Falk, eds.), pp. 227–246, Plenum Press, New York.

    Google Scholar 

  • Hart, J. S. 1971. Rodents, in: Comparative Physiology of Thermoregulation (G. G. Whittow, ed.), p. 1 – 149, Academic Press, New York.

    Google Scholar 

  • Hart, J. S., and Irving, L. 1959. The energetics of harbor seals in air and in water with special consideration of seasonal changes. Can. J. Zool. 37: 447–57.

    Google Scholar 

  • Haug, H. 1972. Stereological methods in the analysis of neuronal parameters in the central nervous system. J. Microsc. 95: 165–180.

    PubMed  CAS  Google Scholar 

  • Heller, H. C. 1979. Hibernation: Neural aspects. Ann. Rev. Physiol. 41: 305–321.

    CAS  Google Scholar 

  • Hemmer, H. 1971. Beitrag zur Erfassung der Progressiven Cephalisation bei Primaten, in: Proceedings of the 3rd International Congress of Primatology, Vol. 1 (H. Hemmer, H. Biegert, and W. Leutenegger, eds.), pp. 99–107, S. Karger, Basel.

    Google Scholar 

  • Herreid, C. F., and Schmidt-Nielsen, K. 1966. Oxygen consumption, temperature and water loss in bats from different environments. Am. J. Physiol. 211: 1108–1112.

    PubMed  Google Scholar 

  • Herrick, C. J. 1926. Brains of Rats and Men, University of Chicago Press, Chicago.

    Google Scholar 

  • Hildwein, G. 1972. Métabolisme énergétique de quelques mammifères et oiseaux de la forêt équatioriale. Arch. Sci. Physiol. 26: 379–385.

    CAS  Google Scholar 

  • Hildwein, G., and Goffart, M. 1975. Standard metabolism and thermoregulation in a prosimian Perodicticus potto. Comp. Biochem. Physiol. 50A: 201–212.

    CAS  Google Scholar 

  • Hofman, M. A. 1982. Encephalization in mammals in relation to the size of the cerebral cortex. Brain Behav. Evol. 20: 24–96.

    Google Scholar 

  • Holloway, R. L., Jr. 1968. The evolution of the primate brain: Some aspects of quantitative relations. Brain Res. 7: 121–172.

    PubMed  Google Scholar 

  • Holloway, R. L. 1972. New Australopithecine endocast SK 1585 from Swartkrans, S. Africa. Am. J. Phys. Anthropol 37: 173–186.

    Google Scholar 

  • Holloway, R. L., Jr. 1975. The Role of Human Social Behavior in the Evolution of the Brain (43rd James Arthur Lecture), American Museum of Natural History, New York.

    Google Scholar 

  • Holloway, R. L., Jr. 1979. Brain size, allometry and reorganization: Toward a synthesis, in: Development and Evolution of Brain Size: Behavioral Implications (M. E. Hahn, C. Jensen, and B. C. Dudek, eds., pp. 59–88, Academic Press, New York.

    Google Scholar 

  • Holloway, R. L., Jr. 1981. Revisiting the South African Taung Australopithecine endocast: The position of the lunate sulcus as determined by the stereo polotting technique. Am. J. Phys. Anthropol 56: 43–58.

    Google Scholar 

  • Holloway, R. L., and Post, D. G. 1982. The relativity of relative brain measure and hominid mosaic evolution, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 57–76, Plenum Press, New York.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. 1963. Shape and arrangement of columns in cat’s striate cortex. J. Physiol 165: 559–568.

    PubMed  CAS  Google Scholar 

  • Hudson, J. W., and Brower, J. E. 1974. Oxygen consumption: Vertebrates, in: Biology Data Book HI (P. L. Altman and D. S. Dittimer, eds.), pp. 1613–1616, Federation of American Societies for Experimental Biology, Washington, D.C.

    Google Scholar 

  • Huxley, J. S. 1932. Problems of Relative Growth, Methuen, London.

    Google Scholar 

  • Irving, L., and Hart, J. S. 1957. The metabolism and insulation of seals as bare-skinned mammals in cold water. Can. J. Zool. 35: 497–511.

    CAS  Google Scholar 

  • Irving, L., Scholander, P. F., and Grinnell, S. W. 1941. The respiration of the porpoise, Tursiops truncates. J. Cell. Comp. Physiol. 17: 145–168.

    CAS  Google Scholar 

  • Jerison, H. J. 1955. Brain to body ratios and the evolution of intelligence. Science 121: 447–449.

    PubMed  CAS  Google Scholar 

  • Jerison, H. J. 1973. Evolution of the Brain and Intelligence, Academic Press, New York.

    Google Scholar 

  • Jerison, H. J. 1979. The evolution of diversity in brain size, in: Development and Evolution of Brain Size: Behavioral Implications (M. E. Hahn, C. Jensen, and B. C. Dudek, eds.), pp. 30–57, Academic Press, New York.

    Google Scholar 

  • Jerison, H. J. 1982. Ailometry brain size, cortical surface and convolutedness, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 77–84, Plenum Press, New York.

    Google Scholar 

  • Kaas, J. H. 1978. The organization of visual cortex in primates, in: Sensory Systems of Primates (C. R. Noback, ed.), pp. 151–179, Plenum Press, New York.

    Google Scholar 

  • Kamau, J. M. Z., and Maloiy, G. M. D. 1981. The fasting metabolism of a small East African antelope, the dik-dik. J. Physiol. 319: 50–51p.

    Google Scholar 

  • Karandeeva, O. G., Matisheua, S. K., and Shapunov, V. M. 1973. Features of external respiration in the Delphinidae, in: Morphology and Ecology of Marine Mammals (K. K. Chapskii and V. E. Sokolov, eds.), pp. 196–206, Wiley, New York.

    Google Scholar 

  • Kay, R. F. 1975. The functional adaptations of primate molar teeth. Am. J. Phys. Anthropol. 43: 195–215.

    PubMed  CAS  Google Scholar 

  • Kayser, C., and Heusner, H. 1964. Etude comparative du métabolisme énergétique dans la série animale. J. Physiol. 56: 489–524.

    CAS  Google Scholar 

  • Kety, S. S. 1957. The general metabolism of the brain in vivo, in: Metabolism of the Nervous System (D. Richter, ed.), pp. 221–237, Pergamon, New York.

    Google Scholar 

  • Kleiber, M. 1961. The Fire of Life: An Introduction to Animal Energetics, Wiley, New York.

    Google Scholar 

  • Kraus, C., and Pilleri, G. 1969. Quantitative Untersuchunaen über die Grosshirnrinde der Ceta- ceen, in: Investigations on Cetacea (G. Pilleri, ed.), pp. 127–150, Waldau, Berne.

    Google Scholar 

  • Kuschinsky, W., and Wahl, M. 1978. Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol. Rev. 58: 656–689.

    PubMed  CAS  Google Scholar 

  • Lajtha, A. L., Maker, H. S., and Clarke, D. D. 1981. Metabolism and transport of carbohydrates and amino acids, in: Basic Neurochemistry (G. J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds., pp. 329–353, Little, Brown, Boston.

    Google Scholar 

  • Lapicque, L. 1912. Le poids du cerveau et la grandeur du corps. Biologica 21: 257–265.

    Google Scholar 

  • Leutenegger, W. 1982. Encephalization and obstetrics in primates with particular reference to human evolution, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 85–95, Plenum Press, New York.

    Google Scholar 

  • Lund-Andersen, H. 1979. Transport of glucose from blood to brain. Physiol. Rev. 59: 305–352.

    PubMed  CAS  Google Scholar 

  • Mace, G. M., Harvey, P. H., and Clutton-Brock, T. H. 1981. Brain size and ecology in small animals. J. Zool. 193: 333–354.

    Google Scholar 

  • McHenry, H. M. 1975. Fossils and the mosaic nature of human evolution. Science 190: 425–431.

    PubMed  CAS  Google Scholar 

  • MacMillen, R. E., and Nelson, J. E. 1969. Bioenergetics and body size in dasyurid marsupials. Am. J. Physiol. 217: 1246–1251.

    PubMed  CAS  Google Scholar 

  • McNab, B. K. 1969. The economics of temperature regulation in neotropical bats. Comp. Biochem. Physiol. 31: 227–268.

    PubMed  CAS  Google Scholar 

  • McNab, B. K. 1978. Energetics of arboreal folivores: Physiological problems and ecological consequences of feeding on an ubiquitous food supply, in: The Ecology of Arboreal Folivores (G. G. Montgomery, ed.), pp. 153–162, Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • MacPhail, E. 1982. Brain and Intelligence in Vertebrates, Oxford University Press, New York.

    Google Scholar 

  • Mangold, R., Sokoloff, L., Conner, E., Kleinerman, J., Therman, P. G., and Kety, S. S. 1955. The effects of sleep and lack of sleep on the cerebral metabolism of normal young men. J. Clin. Invest 34: 1092–1100.

    PubMed  CAS  Google Scholar 

  • Manouvrier, L. 1885. Sur l’interprétation de la quantité dans l’encéphale et dans le cerveau en particulier. Bull. Soc. Anthropol (Paris) 3: 137–323.

    Google Scholar 

  • Martin, R. D. 1981. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293: 57–60.

    PubMed  CAS  Google Scholar 

  • Martin, R. D. 1982. Allometric approaches to the evolution of the primate nervous system, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 39–56, Plenum Press, New York.

    Google Scholar 

  • Milton, K., Casey, T. M., and Casey, K. K. 1979. The basal metabolism of mantled howler monkeys (Alouatta palliata). J. Mammal. 60: 373–376.

    Google Scholar 

  • Mink, J. W., Blumenschine, R. J., and Adams, D. B. 1981. Ratio of central nervous system to body metabolism in vertebrates: Its constancy and functional basis. Am. J. Physiol. 241: R203–R212.

    Google Scholar 

  • Mountcastle, V. B. 1957. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 20: 408–434.

    PubMed  CAS  Google Scholar 

  • Müller, E. 1975. Temperature regulation in the slow loris. Naturwissenschaften 62: 140–141.

    PubMed  Google Scholar 

  • Nakayama, T., Hori, T., Nagasaka, T., Tokura, H., and Tadaki, E. 1971. Thermal and metabolic responses in the Japanese monkey at temperatures of 5–38°C. J. Appl. Physiol. 31: 332–337.

    PubMed  CAS  Google Scholar 

  • Nelson, L. E., and Asling, C. W. 1962. Metabolic rate of tree-shrews (Urogale everetti). Proc. Soc. Exp. Biol. Med. 109: 602–604.

    PubMed  CAS  Google Scholar 

  • Nilsson, B., and Siesjo, B. K. 1976. A method for determining blood flow and oxygen consumption in the rat brain. Acta Physiol. Scand. 96: 72–82.

    PubMed  CAS  Google Scholar 

  • Ogren, M. P. 1982. The development of the primate pulvinar, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 113–129, Plenum Press, New York.

    Google Scholar 

  • Palkovits, M., Magyar, P., and Szentagothai, J. 1971. Quantitative histological analysis of the cerebellar cortex in the cat. I. Number and arrangement in space of the Purkinje cells. Brain Res. 32: 1–13.

    PubMed  CAS  Google Scholar 

  • Passingham, R. E. 1973. Anatomical differences between the neocortex of man and other primates. Brain Behav. Evol. 7: 337–359.

    PubMed  CAS  Google Scholar 

  • Passingham, R. E. 1975. Changes in the size and organization of the brain in man and his ancestors. Brain Behav. Evol. 11: 73–90.

    PubMed  CAS  Google Scholar 

  • Pilleri, G. 1959. Beitrage zur vergleichenden Morphologie des Nagetiergehirns. Acta Anat. 39(Suppl.): 1–124.

    CAS  Google Scholar 

  • Prlot, P., and Stephan, H. 1970. Encephalization in Chiroptera. Can.J. Zool. 48: 433–444.

    Google Scholar 

  • Proppe, D. W., and Gale, C. C. 1970. Endocrine thermoregulatory responses to local hypothalamic warming in unanesthetized baboons. Am. J. Physiol. 219: 202–207.

    PubMed  CAS  Google Scholar 

  • Pubols, B. H., and Pubols, C. M. 1972. Neural organization of somatic sensory representation in the spider monkey. Brain Behav. Evol. 5: 342–366.

    PubMed  Google Scholar 

  • Radinsky, L. 1970. The fossil evidence of prosimian brain evolution, in: The Primate Brain (C. R. Noback and W. Montagna, eds.), pp. 209–224, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Radinsky, L. 1974. The fossil evidence of anthropoid brain evolution. Am. J. Phys. Anthropol. 41: 15–27.

    Google Scholar 

  • Radinsky, L. 1975. Primate brain evolution. Am. Sci. 63: 656–663.

    PubMed  CAS  Google Scholar 

  • Radinsky, L. 1977. Early primate brains: Facts and fiction. J. Hum. Evol. 6: 79–86.

    Google Scholar 

  • Radinsky, L. 1978. Evolution of brain size in carnivores and ungulates. Am. Nat. 112: 815 – 831.

    Google Scholar 

  • Radinsky, L. 1979. The Fossil Record of Primate Brain Evolution (49th James Arthur Lecture on the Evolution of the Human Brain), American Museum of Natural History, New York.

    Google Scholar 

  • Radinsky, L. 1981. Brain evolution in extinct South American ungulates. Brain Behav. Evol. 18: 169–187.

    PubMed  CAS  Google Scholar 

  • Radinsky, L. 1982. Some cautionary notes on making inferences about relative brain size, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 29–37, Plenum Press, New York.

    Google Scholar 

  • Rakic, P., and Sidman, R. L. 1969. Telencephalic origin of pulvinar neurons in the fetal human brain. Z. Anat. Entwicklungsgesch. 129: 53–82.

    CAS  Google Scholar 

  • Rensch, B. 1960. Evolution above the Species Level, Columbia University Press, New York.

    Google Scholar 

  • Richman, D. P., Stewart, R. M., Hutchinson, J. W., and Caviness, V. S., Jr. 1975. Mechanical model of brain convolutional development. Science 189: 18–21.

    Google Scholar 

  • Risberg, J., and Ingvar, D. H. 1973. Patterns of activation in the grey matter of the dominant hemisphere during memorization and reasoning. A study of regional cerebral blood flow changes during psychological testing. Brain 96: 737–756.

    PubMed  CAS  Google Scholar 

  • Rockell, A. J., Hiorns, R. W., and Powell, T. P. S. 1974. Numbers of neurons through full depth of neocortex. A. AnaL 118: 371.

    Google Scholar 

  • Rockell, A. J., Hiorns, R. W., and Powell, T. P. S. 1980. The basic uniformity in structure of the neocortex. Brain 103: 221–244.

    Google Scholar 

  • Sacher, G. A. 1970. Allometric and functional analysis of brain structure in insectivores and primates, in: The Primate Brain (C. R. Noback and W. Montagna, eds.), pp. 245–287, Ap- pleton-Century-Crofts, New York.

    Google Scholar 

  • Sacher, G. A. 1982. The role of brain maturation in the evolution of the primates, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 97–112, Plenum Press, New York.

    Google Scholar 

  • Sarnat, H. B., and Netsky, M. G. 1981. Evolution of the Nervous System. Oxford University Press, New York.

    Google Scholar 

  • Schleicher, A., Zilles, K. V., and Kretschman, H. Z. 1978. Automatische Registrierung und Auswertung eines Grauwertindex in histogischen Schnitten. Anat. Anz. 144: 413–415.

    Google Scholar 

  • Schmidt, C. F., Ketz, S. S., and Pennes, H. H. 1945. The gaseous metabolism of the brain of the monkey. Am. J. Physiol. 143: 33–52.

    CAS  Google Scholar 

  • Schmidt-Nielsen, K. 1975. Scaling in biology: The consequences of size. J. Exp. Zool. 194: 287– 308.

    PubMed  CAS  Google Scholar 

  • Scholander, P. F., and Irving, L. 1941. Experimental investigations on the respiration and diving of the Florida manatee. J. Cell. Comp. Physiol. 17: 169–191.

    CAS  Google Scholar 

  • Scholander, P. F., Hock, R., Walters, V., Johnson, F., and Irving, L. 1950. Heat regulation in some arctic and tropical mammals. Biol. Bull. 99: 237–258.

    PubMed  CAS  Google Scholar 

  • Shariff, G. A. 1953. Cell counts in the primate cerebral cortex.J. Comp. Neurol. 98: 381–400.

    PubMed  CAS  Google Scholar 

  • Shepherd, G. M. 1974. The Synaptic Organization of the Brain, Oxford University Press, New York.

    Google Scholar 

  • Sholl, D. A. 1948. The quantitative investigation of the vertebrate brain and the applicability of allometric formulae to its study. Proc. R. Soc. B 135: 243–258.

    Google Scholar 

  • Siesjo, B. K. 1978. Brain Energy Metabolism, Wiley, New York.

    Google Scholar 

  • Slijper, E.J. 1962. Whales, Hutchinson, London.

    Google Scholar 

  • Snell, O. 1892. Die Abhängigkeit des Hirngewichts von dem Körpergewicht und den geistigen Fähigkeiten. Arch. Psychiatr. 23: 436–446.

    Google Scholar 

  • Sokoloff, L. 1973. The (14C) deoxyglucose method: Four years later. Acta Neurol. Scand. Suppl. 72: 640–649.

    Google Scholar 

  • Sokoloff, L. 1981. Circulation and energy metabolism of the brain, in: Basic Neurochemistry (G. T. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), pp. 471–495, Little, Brown, Boston.

    Google Scholar 

  • Sokoloff, L., Mangold, R., Wechsler, R. L., Kennedy, C., and Kety, S. S. 1955. The effect of mental arithmetic on cerebral circulation and metabolism. J. Clin. Invest. 34: 1101–1106.

    PubMed  CAS  Google Scholar 

  • Solnitsky, O. 1945. Volumetric and reconstruction studies of the primate cerebellar nuclei. Anat. Rec. 91: 300.

    Google Scholar 

  • Stahl, W. R. 1967. Scaling of respiratory variables in mammals. J. Appl. Physiol. 219: 1104–1107.

    Google Scholar 

  • Stephan, H. 1956. Vergleichend-anatomische Untersuchungen an Insektivorengehirnen. Mor- phol. Jahrb. 97: 77–122.

    Google Scholar 

  • Stephan, H. 1960. Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z. Wiss. Zool. 164: 143–172.

    Google Scholar 

  • Stephan, H. 1969. Quantitative investigations on visual structures in primate brains, in: Proceedings of the 2nd International Congress of Primatology, Vol. 3 (H. O. Hofer, ed.), pp. 34–42, S. Karger, Basel.

    Google Scholar 

  • Stephan, H. 1972. Evolution of primate brains: A comparative anatomical investigation, in: The Functional and Evolutionary Biology of Primates (R. Tuttle, ed.), pp. 155–174, Aldine, Chicago.

    Google Scholar 

  • Stephan, H. 1975. Allocortex, in: Handbuch der mikroskopischen Anatomie des Menschen: IV/9 (W. Bargmann, ed.), Springer, New York.

    Google Scholar 

  • Stephan, H., and Andy, O. J. 1964. Quantitative comparisons of brain structures from insectivores to primates. Am. Zool. 4: 59–74.

    PubMed  CAS  Google Scholar 

  • Stephan, H., and Andy, O. J. 1970. The allocortex in primates, in: The Primate Brain (C. R. Noback and W. Montagna, eds.), pp. 109–135, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Stephan, H., and Andy, O.J. 1977. Quantitative comparison of the amygdala in insectivores and primates. Acta Anat. 98: 130–153.

    PubMed  CAS  Google Scholar 

  • Stephan, H., Bauchot, R., and Andy, O.J. 1970. Data on size of the brain and various brain parts in insectivores and primates, in: The Primate Brain (C. R. Noback and W. Montagna, eds.), pp. 289–297, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Stephan, H., Frahm, and Baron, G. 1981. New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol. 35: 1–29.

    PubMed  CAS  Google Scholar 

  • Straile, W. E. 1969. Encapsulated nerve end-organs in the rabbit, mouse, sheep and man.J. Comp. Neurol. 136: 317–336.

    PubMed  CAS  Google Scholar 

  • Szarski, H. 1980. A functional and evolutionary interpretation of brain size in vertebrates, in: Evolutionary Biology, Vol. 12 (M. Hecht, W. Steere, and B. Wallace, eds.), pp. 149–174, Plenum Press, New York.

    Google Scholar 

  • Szenthagothai, J. 1978. The neuron network of the cerebral cortex: a functional interpretation. The Ferrier Lecture, 1977. Proc. Roy. Soc. Lond. B 201: 219–248.

    Google Scholar 

  • Tilney, F. 1928. The Brain from Ape to Man, Hoeber, New York.

    Google Scholar 

  • Towe, A. L. 1973. Relative numbers of pyramidal tract neurons in mammals of different sizes. Brain Behav. Evol. 7: 1 – 17.

    PubMed  CAS  Google Scholar 

  • Tower, D. B. 1954. Structural and functional organization of the mammalian cerebral cortex. The correlation of neuron density with brain size. J. Comp. Neurol. 101: 14–53.

    Google Scholar 

  • Tower, D. B., and Young, O. M. 1973. The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of constant density of glial cells in cerebral cortices of mammalian species from mouse to whale. J. Neurochem. 20: 269–278.

    PubMed  CAS  Google Scholar 

  • Townsend, R. E., Prinz, P. N., and Obrest, W. D. 1973. Human cerebral blood flow during sleep and waking. J. Appl. Physiol. 35: 620–625.

    PubMed  CAS  Google Scholar 

  • Von Bonin, G. 1937. Brain-weight and body-weight of mammals. J. Gen. Psychol. 16: 379–389.

    Google Scholar 

  • Von Lierse, W. 1963. Die Kapillarlichte im Wirbeltiergehirn. Acta Anat. 54: 1–31.

    PubMed  CAS  Google Scholar 

  • Von Rohrs, M. 1966. Vergleichende Untersuchungen zur Evolution der Gehirne von Edentaten. I. Hirngewicht-Körpergewicht. Z. Zool. Syst. Evolutionsforsch. 4: 196–207.

    Google Scholar 

  • Walker, J. M., Glotzbach, S. F., Berger, R. J., and Heller, H. C. 1977. Sleep and hibernation in ground squirrels (Citellus spp.): Electrophysological observations. Am. J. Physiol. 233: R213 – 21.

    Google Scholar 

  • Weibel, E. R. 1979. Stereological Methods, Vol. 1, Academic Press, New York.

    Google Scholar 

  • Weibel, E. R., Taylor, C. R., Gehr, P., Hoppeler, H., Mathiew, O., and Maloiy, G. M. O. 1981. Design of the mammalian respiratory system. Respir. Physiol. 44: 151–164.

    PubMed  CAS  Google Scholar 

  • Welker, W. I. 1973. Principles of organization of the ventrobasal complex in mammals. Brain Behavior. Evol. 7: 253–336.

    CAS  Google Scholar 

  • Welker, W. I. 1976. Brain evolution in mammals: A review of concepts, problems and methods, in: Evolution of Brain and Behavior in Vertebrates (B. Masterton, M. E. Bitterman, C. B. G. Campbell, and N. Hotton, eds.), pp. 251–344, Lawrence Erlbaum, Hillsdale, New Jersey.

    Google Scholar 

  • West, M. J. 1981. The constant number of granule cells per unit surface area of the fascia dentatae of three different species. Soc. Neurosci. 7: 465.

    Google Scholar 

  • West, M. J., and Andersen, A. H. 1980. An allometric study of the area dentata in the rat and mouse. Brain Res. Rev. 2: 317–348.

    CAS  Google Scholar 

  • Zilles, K., and Schleicher, A. 1980. Similarities and differences in the cortical areal patterns of Galago demidovii (E. Geoffroy, 1796), (Lorisidae, primates) and Microcebus murinus (E. Geoffroy, 1828), (Lemuridae, primates). Folia Primatol. 33: 161–171.

    PubMed  CAS  Google Scholar 

  • Zilles, K., Schleicher, A., and Kretschmann, H.J. 1978. A quantitative approach to cytoarchitec- tonics. I. The areal pattern of the cortex of Tupaia belangen. Anat. Embryol. 153: 195–212.

    CAS  Google Scholar 

  • Zilles, K., Stephan, H., and Schleicher, A. 1982. Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species, in: Primate Brain Evolution: Methods and Concepts, (E. Armstrong and D. Falk, eds.), pp. 177–201, Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Armstrong, E. (1985). Allometric Considerations of the Adult Mammalian Brain, with Special Emphasis on Primates. In: Jungers, W.L. (eds) Size and Scaling in Primate Biology. Advances in Primatology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3647-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3647-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3649-3

  • Online ISBN: 978-1-4899-3647-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics