Skip to main content

Intermediate Stage Processes: Solution-Reprecipitation

  • Chapter
Liquid Phase Sintering

Abstract

During the period when the liquid forms and spreads, rearrangement events happen rapidly. Although solution and reprecipitation of the solid occurs concurrently with rearrangement, the rearrangement events dominate the early response. During the second stage of liquid phase sintering rearrangement ends and solution-reprecipitation processes become dominant. Solution-reprecipitation requires solid solubility in the liquid. It is characterized by grain growth, dissolution of small grains, grain rounding, densification, and development of a rigid skeleton of solid. The two main concerns are with elimination of residual porosity and the concomitant microstructural coarsening. Both processes are interrelated and depend on essentially the same kinetic steps. For this treatment the solution-reprecipitation controlled densification event will be treated independently from microstructural coarsening. The reader is cautioned that this separation of events is artificial and is intended to ease study of liquid phase sintering. Actually, microstructural coarsening occurs simultaneously with solution-reprecipitation controlled densification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Watanabe and Y. Masuda, “The Growth of Solid Particles in Fe-20 wt.% Cu Alloy During Sintering in the Presence of a Liquid Phase,” Trans. Japan Inst. Met., 1973, vol. 14, pp. 320–326.

    CAS  Google Scholar 

  2. W. J. Huppmann, “The Elementary Mechanisms of Liquid Phase Sintering. 2. Solution — Reprecipitation,” Z. Metallkde., 1979, vol. 70, pp. 792–797.

    CAS  Google Scholar 

  3. D. N. Yoon and W. J. Huppmann, “Grain Growth and Densification During Liquid Phase Sintering of W-Ni,” Acta Met., 1979, vol. 27, pp. 693–698.

    Article  CAS  Google Scholar 

  4. W. A. Kaysser, O. J. Kwon, and G. Petzow, “Pore Formation and Pore Elimination During Liquid Phase Sintering,” Proceedings P/M-82, Associazione Italiana di Metallurgia, Milano, Italy, 1982, pp. 23–30.

    Google Scholar 

  5. H. H. Park, S. J. Cho, and D. N. Yoon, “Pore Filling Process in Liquid Phase Sintering,” Metall. Trans. A, 1984, vol. 15A, pp. 1075–1080.

    Article  Google Scholar 

  6. W. D. Kingery, “Densification During Sintering in the Presence of a Liquid Phase. 1. Theory,” J. Appl. Phys., 1959, vol. 30, pp. 301–306.

    Article  CAS  Google Scholar 

  7. G. H. Gessinger and H. F. Fischmeister, “A Modified Model for the Sintering of Tungsten with Nickel Additions,” J. Less-Common Metals, 1972, vol. 27, pp. 129–141.

    Article  CAS  Google Scholar 

  8. G. H. Gessinger, H. F. Fischmeister, and H. L. Lukas, “A Model for Second-Stage Liquid-Phase Sintering with a Partially Wetting Liquid,” Acta Met., 1973, vol. 21, pp. 715–724.

    Article  CAS  Google Scholar 

  9. F. B. Swinkels and M. F. Ashby, “Role of Surface Redistribution in Sintering by Grain Boundary Transport,” Powder Met., 1980, vol. 23, pp. 1–7.

    CAS  Google Scholar 

  10. L. Lindau and K. G. Stjernberg, “Grain Growth in TiC-Ni-Mo and TiC-Ni-W Cemented Carbides,” Powder Mer., 1976, vol. 19, pp. 210–213.

    CAS  Google Scholar 

  11. S. Sarian and H. W. Weart, “Kinetics of Coarsening of Spherical Particles in a Liquid Matrix,” J. Appl. Phys., 1966, vol. 37, pp. 1675–1681.

    Article  CAS  Google Scholar 

  12. H. E. Exner, E. Santa Marta, and G. Petzow, “Grain Growth in Liquid-Phase Sintering of Carbides,” Modern Developments in Powder Metallurgy, vol. 4, H. H. Hausner (ed.), Plenum Press, New York, NY, 1971, pp. 315–325.

    Google Scholar 

  13. H. E. Exner, “Ostwald-Reifung von Ubergangsmetallkarbiden in Flussingem Nickel und Kobalt,” Z. Metallkde., 1973, vol. 64, pp. 273–279.

    CAS  Google Scholar 

  14. G. C. Kuczynski and O. P. Gupta, “Model Experiments of Sintering in the Presence of Liquid Phase,” Sintering Theory and Practice, M. M. Ristic (ed.), International Team for Studying Sintering, Beograd, Yugoslavia, 1973, pp. 187–200.

    Google Scholar 

  15. A. L. Prill, H. W. Hayden, and J. H. Brophy, “A Reanalysis of Data on the Solution-Reprecipitation Stage of Liquid-Phase Sintering,” Trans. TMS-AIME, 1965, vol. 233, pp. 960–964.

    CAS  Google Scholar 

  16. W. J. Huppmann, “Sintering in the Presence of a Liquid Phase,” Sintering and Catalysis, G. C. Kuczynski (ed.), Plenum Press, New York, NY, 1975, pp. 359–378.

    Chapter  Google Scholar 

  17. Z. S. Nikolic and W. J. Huppmann, “Computer Simulation of Chemically Driven Grain Growth During Liquid Phase Sintering,” Acta Met., 1980, vol. 28, pp. 475–479.

    Article  CAS  Google Scholar 

  18. P. V. Hobbs and B. J. Mason, “The Sintering and Adhesion of Ice,” Phil. Mag., 1964, vol. 9, pp. 181–197.

    Article  CAS  Google Scholar 

  19. F. F. Lange, “Liquid Phase Sintering: Are Liquids Squeezed Out from Between Compressed Particles,” J. Amer. Ceramic Soc, 1982, vol. 65, P.C23.

    Google Scholar 

  20. S. Takajo, W. A. Kaysser, and G. Petzow, “Analysis of Particle Growth by Coalescence During Liquid Phase Sintering,” Acta Met., 1984, vol. 32, pp. 107–113.

    Article  CAS  Google Scholar 

  21. P. W. Voorhees, “Ostwald Ripening in Two Phase Mixtures”, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1982.

    Google Scholar 

  22. J. White, “Microstructure and Grain Growth in Ceramics in the Presence of a Liquid Phase,” Sintering and Related Phenomena, G. C. Kuczynski (ed.), Plenum Press, New York, NY, 1973, pp. 81–108.

    Chapter  Google Scholar 

  23. T. J. Whalen and M. Humenik, “Sintering in the Presence of a Liquid Phase,” Sintering and Related Phenomena, G. C. Kuczynski, N. Hooton, and C. Gibbon (eds.), Gordon and Breach, New York, NY, 1967, pp. 715–74.

    Google Scholar 

  24. G. H. Gessinger, H. F. Fischmeister, and H. L. Lukas, “The Influence of a Partially Wetting Second Phase on the Sintering of Solid Particles,” Powder Met., 1973, vol. 16, pp. 119–127.

    CAS  Google Scholar 

  25. W. A. Kaysser, M. Zivkovic, and G. Petzow, “Shape Accommodation During Grain Growth in the Presence of a Liquid Phase,” J. Mater. Sci., 1985, vol. 20, pp. 578–584.

    Article  CAS  Google Scholar 

  26. S. S. Kim and D. N. Yoon, “Formation of Etch Boundaries at the Interface of Mo Grains and a Liquid Ni-Fe Matrix During Cyclic Annealing,” Metallog., 1983, vol. 16, pp. 249–253.

    Article  CAS  Google Scholar 

  27. W. A. Kaysser and G. Petzow, “Recent Conceptions on Liquid Phase Sintering,” Proceedings Sintering Theory and Practice Conference, The Metals Society, London, UK, 1984, pp. 10.1–10.6.

    Google Scholar 

  28. S. S. Kim and D. N. Yoon, “Coarsening Behaviour of Mo Grains Dispersed in Liquid Matrix,” Acta Met., 1983, vol. 31, pp. 1151–1157.

    Article  CAS  Google Scholar 

  29. W. D. Kingery, “Sintering in the Presence of a Liquid Phase,” Kinetics of High-Temperature Processes, W. D. Kingery (ed.), John Wiley, New York, NY, 1959, pp. 187–194.

    Google Scholar 

  30. V. N. Eremenko, Y. V. Naidich, and I. A. Lavrinenko, Liquid Phase Sintering, Consultants Bureau, New York, NY, 1970.

    Book  Google Scholar 

  31. L. K. V. Lou, T. E. Mitchell, and A. H. Heuer, “Impurity Phases in Hot Pressed Silicon Nitride,” J. Amer. Ceramic Soc, 1984, vol. 67, pp. 392–396.

    Google Scholar 

  32. D. R. Clarke and G. Thomas, “Microstructure of Yttria Fluxed Hot Pressed Silicon Nitride,” J. Amer. Ceramic Soc, 1978, vol. 61, pp. 114–118.

    Article  CAS  Google Scholar 

  33. D. R. Clarke, N. J. Zaluzec, and R. W. Carpenter, “The Intergranular Phase in Hot Pressed Silicon Nitride: I, Elemental Composition,” J. Amer. Ceramic Soc, 1981, vol. 64, pp. 601–607.

    Article  CAS  Google Scholar 

  34. R. L. Tsai and R. Raj, “Creep Fracture in Ceramics Containing Small Amounts of a Liquid Phase,” Acta Met., 1982, vol. 30, pp. 1043–1058.

    Article  CAS  Google Scholar 

  35. R. Raj, “Morphology and Stability of the Glass Phase in Glass-Ceramic Systems,” J. Amer. Ceramic Soc, 1981, vol. 64, pp. 245–248.

    Article  CAS  Google Scholar 

  36. Y. D. Song and D. N. Yoon, “The Driving Force for Chemically Induced Migration of Molten Ni Films Between W Grains,” Metall. Trans. A, 1984, vol. 15A, pp. 1503–1505.

    Article  Google Scholar 

  37. W. J. Huppmann and H. Riegger, “Liquid Phase Sintering of the Model System W-Ni,” Inter. J. Powder Met. Powder Tech., 1977, vol. 13, pp. 243–247.

    CAS  Google Scholar 

  38. W. D. Kingery and M. D. Narasimhan, “Densification During Sintering in the Presence of a Liquid Phase 2. Experimental,” J. Appl. Phys., 1959, vol. 30, pp. 307–310.

    Article  CAS  Google Scholar 

  39. H. H. Park and D. N. Yoon, “Effect of Dihedral Angle on the Morphology of Grains in a Matrix Phase,” Metali. Trans. A, 1985, Vol. 16A, pp. 923–928.

    Article  Google Scholar 

  40. T. H. Courtney, “A Reanalysis of the Kinetics of Neck Growth During Liquid Phase Sintering,” Metall. Trans. A, 1977, vol. 8A, pp. 671–677.

    Article  Google Scholar 

  41. W. A. Kaysser, S. Takajo, and G. Petzow, “Particle Growth by Coalescence During Liquid Phase Sintering of Fe-Cu,” Acta Met., 1984, vol. 32, pp. 115–122.

    Article  CAS  Google Scholar 

  42. Y. Masuda and R. Watanabe, “Ostwald Ripening Processes in the Sintering of Metal Powders,” Sintering Processes, G. C. Kuczynski (ed.), Plenum Press, New York, NY, 1980, pp. 3–21.

    Chapter  Google Scholar 

  43. R. Watanabe and Y. Masuda, “The Growth of Solid Particles in Some Two-Phase Alloys During Sintering in the Presence of a Liquid Phase,” Sintering and Catalysis, G. C. Kuczynski (ed.), Plenum Press, New York, NY, 1975, pp. 389–398.

    Chapter  Google Scholar 

  44. A. N. Niemi and T. H. Courtney, “Microstructural Development and Evolution in Liquid-Phase Sintered Fe-Cu Alloys,” J. Mater. Sci., 1981, vol. 16, pp. 226–236.

    Article  CAS  Google Scholar 

  45. W. A. Kaysser, S. Takajo, and G. Petzow, “Particle Growth by Coalescence During Liquid Phase Sintering of Fe-Cu,” Sintering — Theory and Practice, D. Kolar, S. Pejovnik, and M. M. Ristic (eds.), Elsevier Scientific, Amsterdam, Netherlands, 1982, pp. 321–327.

    Google Scholar 

  46. R. V. Makarova, O. K. Teodorovich, and I. N. Frantsevich, “The Coalescence Phenomenon in Liquid-Phase Sintering in the Systems Tungsten-Nickel-Iron and Tungsten-Nickel-Copper,&#x201D Soviet Powder Met, Metal Ceram., 1965, vol. 4, pp. 554–559.

    Google Scholar 

  47. E. G. Zukas, P. S. Z. Rogers, and R. S. Rogers, “Unusual Spheroid Behavior During Liquid Phase Sintering,” Inter. J. Powder Met. Powder Tech., 1977, vol. 13, pp. 27–38.

    CAS  Google Scholar 

  48. L. Kozma, W. J. Huppmann, L. Bartha, and P. Mezei, “Initiation of Directional Grain Growth During Liquid-Phase Sintering of Tungsten and Nickel,” Powder Met., 1981, vol. 24, pp. 7–11.

    CAS  Google Scholar 

  49. W. J. Huppmann and G. Petzow, “The Elementary Mechanisms of Liquid Phase Sintering,” Sintering Processes, G. C. Kuczynski (ed.), Plenum Press, New York, NY, 1980, pp. 189–201

    Chapter  Google Scholar 

  50. Z. S. Nikolic, M. M. Ristic, and W. J. Huppmann, “A Simple Method for Computer Simulation of Liquid Phase Sintering,” Modern Developments in Powder Metallurgy, vol. 12, H. H. Hausner, H. W. Antes, and G. D. Smith (eds.), Metal Powder Industries Federation, Princeton, NJ, 1981, pp. 479–502.

    Google Scholar 

  51. E. G. Zukas, P. S. Z. Rogers, and R. S. Rogers, “Spheroid Growth by Coalescence During Liquid-Phase Sintering,” 1. Metallkde., 1976, vol. 67, pp. 591–595.

    CAS  Google Scholar 

  52. D. K. Yoon and W. J. Huppmann, “Chemically Driven Growth of Tungsten Grains During Sintering in Liquid Nickel,” Acta Met., 1979, vol. 27, pp. 973–977.

    Article  CAS  Google Scholar 

  53. N. M. Parikh and M. Humenik, “Cermets: II, Wettability and Microstructure Studies in Liquid-Phase Sintering,” J. Amer. Ceramic Soc., 1957, vol. 40, pp. 315–320.

    Article  CAS  Google Scholar 

  54. W. A. Kaysser, S. Takajo, and G. Petzow, “Low Energy Grain Boundaries in Liquid Phase Sintered Cu-Ag,” 1. Metallkde., 1982, vol. 73, pp. 579–580.

    CAS  Google Scholar 

  55. A. N. Niemi, L. E. Baxa, J. K. Lee, and T. H. Courtney, “Coalescence Phenomena in Liquid Phase Sintering — Conditions and Effects on Microstructure,” Modern Developments in Powder Metallurgy, vol. 12, H. H. Hausner, H. W. Antes, and G. D. Smith (eds.), Metal Powder Industries Federation, Princeton, NJ, 1981, pp. 483–495.

    Google Scholar 

  56. S. Takajo, “Particle Growth by Coalescence During Liquid Phase Sintering of Fe-Cu and Cu-Ag,” Ph.D. Thesis, University of Stuttgart, Stuttgart, FRG, 1981.

    Google Scholar 

  57. W. J. Huppmann and G. Petzow, “The Role of Grain and Phase Boundaries in Liquid Phase Sintering,” Ber. Bunsenges. Phys. Chem., 1978, vol. 82, pp. 308–312.

    CAS  Google Scholar 

  58. T. H. Courtney, “Microstructural Evolution During Liquid Phase Sintering: Part 1. Development of Microstructure,” Metall. Trans. A, 1977, Vol.8A, pp. 679–684.

    Article  Google Scholar 

  59. T. H. Courtney, “Densification and Structural Development in Liquid Phase Sintering,” Metall. Trans. A, 1984, vol. 15A, pp. 1065–1074.

    Article  Google Scholar 

  60. R. Warren, “Particle Growth During Liquid Phase Sintering,” Inter. J. Powder Met. Powder Tech., 1977, vol. 13, pp. 249–252.

    CAS  Google Scholar 

  61. T. K. Kang and D. N. Yoon, “Coarsening of Tungsten Grains in Liquid Nickel-Tungsten Matrix,” Metall. Trans. A, 1978, vol. 9A, pp. 433–438.

    Article  Google Scholar 

  62. T. H. Courtney and J. K. Lee, “An Analysis for Estimating the Probability of Particle Coalescence in Liquid Phase Sintered Systems,” Metall. Trans. A, 1980, vol. 11A, pp. 943–947.

    Article  Google Scholar 

  63. W. J. Muster and H. Willerscheid, “Crystallographic Orientation Relationships in Coalescing Sintered Tungsten Spheres,” Metallog., 1979, vol. 12, pp. 287–294.

    Article  CAS  Google Scholar 

  64. D. R. H. Jones, “The Migration of Grain-Boundary Grooves at the Solid-Liquid Interface,” Acta Met., 1978, vol. 26, pp. 689–694.

    Article  Google Scholar 

  65. L. Kozma and W. J. Huppmann, “Experimental Method for Determining Transport Paths in Liquid Phase Sintering,” Inter. J. Powder Met. Powder Tech., 1979, vol. 15, pp. 115–119.

    CAS  Google Scholar 

  66. R. M. German, “The Contiguity of Liquid Phase Sintered Microstructures,” Metall. Trans. A, 1985, vol. 16A, pp. 1247–1252.

    Article  Google Scholar 

  67. R. Warren and M. B. Waldron, “Microstructural Development During the Liquid-Phase Sintering of Cemented Carbides. II. Carbide Grain Growth,” Powder Met. , 1972, vol. 15, pp. 180–201.

    CAS  Google Scholar 

  68. O. J. Kwon and D. N. Yoon, “The Liquid Phase Sintering of W — Ni,” Sintering Processes, G. C. Kuczynski (ed.), Plenum Press, New York, NY, 1980, pp. 203–218.

    Chapter  Google Scholar 

  69. Y. S. Kim, J. K. Park, and D. N. Yoon, “Liquid Flow into the Interior of W-Ni-Fe Compacts During Liquid Phase Sintering,” Inter. J. Powder Met. Powder Tech., 1985, vol. 21, pp. 29–31.

    CAS  Google Scholar 

  70. S. J. L. Kang, W. A. Kaysser, G. Petzow, and D. N. Yoon, “Elimination of Pores During Liquid Phase Sintering of Mo-Ni,” Powder Met., 1984, vol. 27, pp. 97–100.

    CAS  Google Scholar 

  71. W. Rutkowski, “Quelques Problemes du Frittage en Presence de la Phase Liquide et D’Infiltration,” Planseeber. Pulvermet., 1973, vol. 21, pp. 164–176.

    CAS  Google Scholar 

  72. W. A. Kaysser, and G. Petzow, “Geometry Models for the Elimination of Pores During Liquid Phase Sintering in Systems with Incomplete Wetting,” Sci. Sintering, 1984, vol. 16, pp. 167–175.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

German, R.M. (1985). Intermediate Stage Processes: Solution-Reprecipitation. In: Liquid Phase Sintering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3599-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3599-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3601-1

  • Online ISBN: 978-1-4899-3599-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics