Skip to main content

The Search for Antiparasitic Agents from Marine Animals

  • Chapter
Pharmaceutical and Bioactive Natural Products

Abstract

Infectious diseases caused by parasites occur in people (and animals) throughout the world. It is well known that improperly prepared pork can cause trichinosis, an intestinal infection by the helminth Trichinella spiralis. Hookworm disease is widespread throughout nearly all tropical and subtropical countries and is an infection of the small intestine by the helminth Necator americanus Campers often see warning signs that water in a nearby stream could be contaminated with the protozoan Giardia lamblia. Travelers to the deep tropics (as well as the natives) are advised to use prophylaxis to protect against malarial infections from Plasmodium parasites. These examples vividly illustrate the ubiquity of parasite diseases, which, in most cases, can be controlled by chemotherapy (Gutteridge, 1989b). There are well-known examples of clinically active antiparasitic agents derived from plant and fermentation sources (Hart et al., 1989; James and Gilles, 1985). Just beginning to emerge are marine natural products with activity against helminth and protozoal organisms. These will be the subject of our review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adamczeski, M., Quinoa, E., and Crews, P, 1988, Novel sponge derived amino acids 3. Unusual anthelminthic oxazoles from a marine sponge, J. Am. Chem. Soc. 110: 1598–1602.

    Article  CAS  Google Scholar 

  • Adamczeski, M., Quinoa, E., and Crews, P, 1989, Novel sponge derived amino acids 5. Structures, stereochemistry and synthesis of several new heterocyclics, J. Am. Chem. Soc. 111: 647–654.

    Article  CAS  Google Scholar 

  • Adamczeski, M., Quinoa, E., and Crews, P., 1990, Novel sponge derived amino acids 11. The entire absolute stereochemistry of the bengamides, J. Org. Chem. 55: 240–242.

    Article  CAS  Google Scholar 

  • Agabian, N., and Cerami, A. (eds.), 1990, Parasites: Molecular Biology, Drug and Vaccine Design, Wiley-Liss, New York.

    Google Scholar 

  • Akee, R. H., Carroll, T. R., Yoshida, W. Y., Scheuer, P. J., Stout, T. J., and Clardy, J., 1990, Two imidazole alkaloids from a sponge, J. Org. Chem. 55: 1944–1946.

    Article  CAS  Google Scholar 

  • Alvi, K. A., Crews, P, and Loughhead, D. G., 1991a, Structures and total synthesis of 2-aminoimidazoles from a Notodoris nudibranch, J. Nat. Prod. 54: 1509–1515.

    Article  CAS  Google Scholar 

  • Alvi, K. A., Tenenbaum, L., and Crews, P, 1991b, Anthelmintic polyfunctional nitrogen containing terpenes from marine sponges, J. Nat. Prod. 54: 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Alvi, K. A., Peters, B. M., Hunter, L. M., and Crews, P, 1993, 2-Aminoimidazoles and their zinc complexes from Indo-Pacific Leucetta sponges and Notodoris nudibranchs, Tetrahedron,in press.

    Google Scholar 

  • Arabshahi, L., and Schmitz, E. J., 1987, Brominated tyrosine metabolites from an unidentified sponge, J. Org. Chem. 52: 3584–3586.

    Article  CAS  Google Scholar 

  • Barrow, K. D., 1983, Biosynthesis of marine metabolites, in: Marine Natural Products, Chemical and Biological Perspectives, Vol. 5 ( P J. Scheuer, ed.), Academic Press, New York, pp. 60–61.

    Google Scholar 

  • Baslow, M. H., 1977, Marine Pharmacology, Krieger, New York, pp. 69–70.

    Google Scholar 

  • Braekman, J. C., Daloze, D., Hulot, G., Tursch, B., Declerq, J. P., Germain, G., and Van Meerssche, M., 1978, Chemical studies of marine invertebrates, XXXVII. Three novel meroditerpenoids from the sponge Strongylophora durissima, Bull. Soc. Chim. Belg. 87: 917–926.

    Article  CAS  Google Scholar 

  • Braekman, J. C., Daloze, D., Deneubourg, E, Huysecom, J., and Vandevyer, G., 1987a, 1-Isocyanoaromadendrane, a new isonitrile sesquiterpene from the sponge Acanthella acuta, Bull. Soc. Chem. Belg. 96: 539–543.

    Google Scholar 

  • Braekman, J. C., Daloze, D., Moussiaux, B., and Riccio, R., 1987b, Jaspamide from the marine sponge Jaspis johnstoni, J. Nat. Prod. 50: 994–995.

    Article  CAS  Google Scholar 

  • Broka, C., and Ehrler, J., 1991, Enantioselective total synthesis of bengamides B and E, Tetrahedron Lett. 32: 5907–5910.

    Article  CAS  Google Scholar 

  • Burkholder, P R., and Burkholder, L. M., 1958, Antimicrobial activity of horny corals, Science 127: 1174–1175.

    Article  PubMed  CAS  Google Scholar 

  • Burreson, B. J., Christophersen, C., and Scheuer, P J., 1975, Co-occurrence of two terpenoid isocyanide—formamide pairs in a marine sponge (Halichondria sp.), Tetrahedron 31: 2015–2018.

    Article  CAS  Google Scholar 

  • Campbell, W C., 1985, Ivermectin: An update, Parasitol. Today 1: 10–16.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, W C., Fisher, M. H., Stapley, E. O., Alberg-Schonberg, G., and Jacob, T. A., 1983, Ivermectin: A potent new antiparasitic agent, Science 221: 823–828.

    Article  PubMed  CAS  Google Scholar 

  • Capon, R., Ghisalberti, E. L., Jefferies, P R., Skelton, B. W, and White, A. H., 1981, Structural studies of halogenated diphenyl ethers from a marine sponge, J. Chem. Soc. Perkin Trans. 181: 2464–2467.

    Article  Google Scholar 

  • Carmely, S., Ilan, M., and Kashman, Y., 1989, 2-Amino imidazole alkaloids from the marine sponge Leucetta chagosensis, Tetrahedron 45: 2193–2200.

    Google Scholar 

  • Carté, B., and Faulkner, D. J., 1981, Polybrominated diphenyl ethers from Dysidea herbacea, Dysidea chlorea and Phyllospongia foliascens, Tetrahedron 37: 2335–2339.

    Article  Google Scholar 

  • Chang, C. W J., and Weinheimer, A. J., 1977, 2-Hydroxy-3,5-dibromo-4-methoxyphenylacetamide. A dibromotyrosine metabolite from Psammaplysilla purea, Tetrahedron Lett. 197: 4005–4008.

    Google Scholar 

  • Chang, C. W, Patra, A., Baker, J. A., and Scheuer, P J., 1987, Kalihinols, multifunctional diterpenoid antibiotics from marine sponges Acanthella spp., J. Am. Chem. Soc. 109: 6119–6123.

    Article  CAS  Google Scholar 

  • Chida, N., Tobe, T., and Ogawa, S., 1991, Total synthesis of bengamide E, Tetrahedron Lett. 32: 1063–1066.

    Article  CAS  Google Scholar 

  • Ciminiello, P, Fattorusso, E., Magno, S., and Mangoni, A., 1989, Clathridine and its zinc complex, novel metabolites from the marine sponge Clathrina clathrus, Tetrahedron 45: 3873–3878.

    Article  CAS  Google Scholar 

  • Cimino, G., De Stefano, S., and Minale, L., 1974a, Scalaradial, a third sesterterpene with the tetra carbocyclic skeleton of scalarin, from the sponge Cacospongia mollior, Experientia 30: 846–847.

    Google Scholar 

  • Cimino, G., De Stefano, S., and Minale, L., 1974b, Occurrence of hydroxyhydrcquinone and 2-aminoimidazole in sponges, Comp. Biochem. Physiol. 47B: 895–897.

    CAS  Google Scholar 

  • Cimino, G., De Stefano, S., Minale, L., and Trivellone, E., 1977, 12-Epi-scalarin and 12-epideoxyscalarin, sesterterpenes from the sponge Spongia nitens, J. Chem. Soc. Perkin Trans. 977: 1587–1588.

    Google Scholar 

  • Cook, G. C., 1990, Use of benzimidazole chemotherapy in human helminthiases: Indications and efficacy, Parasitol. Today 6: 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Cook, G. C., 1991, Anthelminthic agents: Some recent developments and their clinical application, Postgrad. Med. J. 67: 16–22.

    Article  PubMed  CAS  Google Scholar 

  • Corely, D. G., Herb, R., Moore, R. E., Scheuer, P J., and Paul, V. J., 1988, Lauliamalides: New potent cytotoxic macrolides from a marine sponge and nudibranch predator, J. Org. Chem. 53: 3644–3646.

    Article  Google Scholar 

  • Crews, P., and Bescansa, P, 1986, Sesterterpenes from a common marine sponge, Hyrtios erecta, J. Nat. Prod. 49: 1041–1052.

    Article  PubMed  CAS  Google Scholar 

  • Crews, P, Manes, L. V, and Boehler, M., 1986, Novel sponge derived amino acids 1. Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis sp., Tetrahedron Lett 27: 2797–2800.

    Article  CAS  Google Scholar 

  • Crews, P, Kakou, Y., and Quit-1°d, E., 1988, Novel sponge derived amino acids 4. Mycothiazole, a polyketide heterocycle from a marine sponge, J. Am. Chem. Soc. 110: 4365–4368.

    Google Scholar 

  • Delappe, I. P, 1988, Pharmaceuticals and the Sea (C. W. Jefford, K. L. Rinehart, and L. S. Shield, eds.), Technomic, Basel, pp. 23–26.

    Google Scholar 

  • Di Blassio, G., Fattorusso, E., Mango, S., Mayol, L., Pedone, C., Santacroce, C., and Sica, D., 1976, Axisonitrile-3, axisothiocyanate-3, and axamide-3, sesquiterpenes with a novel spiro[4,5]decane skeleton from the sponge Axinella cannabina, Tetrahedron 32: 473–478.

    Article  Google Scholar 

  • Djura, P, Stierle, D. B., Sullivan, B., and Faulkner, D. J., 1980, Some metabolites of the marine sponges Smenospongia aurea and Smenospongia (= Polyfibrospongia) echina, J. Org. Chem. 45: 1435–1441.

    Article  CAS  Google Scholar 

  • Doering, T. L., Raper, J., Buxbaum, L. U., Adams, S. P, Gordon, J. I., Hart, G. W, and Englund, P T, 1991, An analog of myristic acid with selective toxicity for African trypanosomas, Science 252: 1852–1854.

    Article  Google Scholar 

  • Eckholm, E., 1989, N. Y. Times Mag. 1989 (January): 20.

    Google Scholar 

  • Edlind, T. D., Hang, T. L., and Chakraborty, P R., 1990, Activity of the anthelmintic benzimidazoles against Giardia lamblia in vitro, Z Infect. Dis. 162: 1408–1411.

    Article  CAS  Google Scholar 

  • Evans, P D., Thonor, C., and Midgley, J. M., 1988, Activities of octopamine and synephrine stereoisomers on octopaminergic receptor subtypes in locust skeletal muscle, J. Pharm. Pharmacol. 40: 855–861.

    Article  PubMed  CAS  Google Scholar 

  • Faulkner, D. J., 1978, Antibiotics from marine organisms, in: Topics in Antibiotic Chemistry, Vol. 2 ( P G. Sammes, ed. ), Ellis Harwood, pp. 9–58.

    Google Scholar 

  • Faulkner, D. J., 1991, Marine natural products, Nat. Prod. Rep. 7: 97–147.

    Article  Google Scholar 

  • Foote, S. J., Thompson, J. K., Marshall, V, Cowan, A. F., Biggs, B. A., Brown, G. V, and Kemp, D. J., 1990, The miltidrug resistance gene of P. falciparum; Does it mediate chloroquine resistance? in: Parasites: Molecular Biology, Drug and Vaccine Design (N. Agabian and A. Cerami, eds. ), Wiley-Liss, pp. 325–334.

    Google Scholar 

  • Freedman, D. O., Zierdt, W. S., Lujan, A., and Nutman, T. B., 1989, The efficiency of ivermectin in the chemotherapy of gastrointestinal helminthiasis in humans, J. Infect. Dis. 159: 1151–1153.

    Article  PubMed  CAS  Google Scholar 

  • Frincke, J. M., and Faulkner, D. J., 1982, Antimicrobial metabolites of the sponge Reniera sp., J. Am. Chem. Soc. 104: 265–269.

    Article  CAS  Google Scholar 

  • Fusetani, N., Antifungal substances from marine invertebrates, 1988, Ann. N. Y. Acad. Sci. 554: 113–127.

    Article  Google Scholar 

  • Fusetani, N., Sugano, M., Matsunaga, S., Hashimoto, K., 1987, (+)-Curcuphenol and dehydrocurcuphenol, novel sesquiterpenes which inhibit H,K ATPase, from a marine sponge Epipolasis sp., Experientia 43: 1234–1235.

    Google Scholar 

  • Gopichand, Y., and Schmitz, F J., 1979, Marine natural products: Fistularin-1 and -3 from the sponge Aplysina fistularis forma fulva, Tetrahedron Lett. 41: 3921–3924.

    Article  Google Scholar 

  • Grieco, P. A., Hon, Y. S., and Perez-Medrano, A., 1988, A convergent enentiospecific total synthesis of the novel cyclodepsipeptide (+)-jasplakinolide, (jaspamide), J. Am. Chem. Soc. 110: 1630–1631.

    Article  CAS  Google Scholar 

  • Groweiss, A., Shmueli, U., and Kashman, Y., 1983, Marine toxins of Latrunculia magnifica, J. Org. Chem. 48: 3512–3516.

    Article  CAS  Google Scholar 

  • Gulavita, N. K., and Scheuer, P. J., 1989, Isolation of the two epimers of aminotetradecadienol from a Xestospongia species, J. Org. Chem. 54: 366–369.

    Article  CAS  Google Scholar 

  • Gutteridge, W. E., 1989a, Antimalarial drugs currently in development, J. R. Soc. Med. 82 (Suppl. 17): 63–66.

    PubMed  Google Scholar 

  • Gutteridge, W. E., 1989b, Parasite vaccines versus anti-parasite drugs: Rivals or running mates, Parasitology 98: S87 - S97.

    Article  PubMed  Google Scholar 

  • Hart, D., Langridge, A., Barlow, D., and Sutton, B., 1989, Antiparasitic drug design, Parasitol. Today 5: 114–120.

    Article  Google Scholar 

  • Horton, P., Inman, W. D., and Crews, P, 1990, Anthelmintic enantiomeric heterocycles from Dysidea marine sponges, J. Nat. Prod. 53: 143–151.

    Article  CAS  Google Scholar 

  • Inman, W. D., and Crews, P, 1989, Novel sponge derived amino acids 8. Conformational analysis of jasplakinolide, J. Am. Chem. Soc. 11: 2822–2829.

    Article  Google Scholar 

  • Inman, W. D., Crews, P., and McDowell, R., 1989, Novel sponge derived amino acids 9. Lithium complexation of jasplakinolide, J. Org. Chem. 54: 2523–2526.

    Article  CAS  Google Scholar 

  • Inman, W. D., O’Neill-Johnson, M., and Crews, P., 1990, Novel marine sponge alkaloids 1. Plakinidine a and b, anthelmintic active alkaloids from a Plakortis sponge, J. Am. Chem. Soc. 112: 1–4.

    Article  CAS  Google Scholar 

  • Ireland, C. M., Roll, D. M., Molinski, T. F., McKee, T. C,. Zabriskie, T. M., and Swersey, J. C., 1988, Uniqueness of the marine chemical environment: Categories of marine natural products from invertebrates, in: Biomedical Importance of Marine Organisms ( D. G. Fautin, ed.), California Academy of Sciences, San Francisco, pp. 41–57.

    Google Scholar 

  • James, D. M., and Gilles, H. M., 1985, Human Antiparasitic Drugs: Pharmacology and Usage, Wiley, New York.

    Google Scholar 

  • Jenkins, D. C., Armitage, R., and Carrington, T. S., 1980, A new primary screen test for anthelmintics utilizing the parasitic stages of Nippostrongylus brasiliensis, in vitro, Z. Parasitenkd. 63: 261–269.

    Article  PubMed  CAS  Google Scholar 

  • Jiménez, C., and Crews, P., 1990, Novel sponge derived amino acids 10. Xestoaminols from Xestospongia sp., J. Nat. Prod. 53: 978–982.

    Article  PubMed  Google Scholar 

  • Jiménez, C., and Crews, P, 1991, Novel sponge-derived amino acids 13. Additional psammaplin derivatives from Psammaplysilla purpurea, Tetrahedron 47: 2097–2102.

    Article  Google Scholar 

  • Jiménez, C., Quinoa, E., Adamczeski, M., Hunter, L. M., and Crews, P, 1991a, Novel sponge derived amino acids 12. Tryptophan type derivatives from Fascaplysinopsis reticulata, J. Org. Chem. 56: 3403–3410.

    Article  Google Scholar 

  • Jiménez, C., Quinoa, E., and Crews, P., 1991b, Novel marine sponge alkaloids 3. ß-Carbolinium salts from Fascaplysinopsis reticulata, Tetrahedron Lett. 47: 3585–3600.

    Google Scholar 

  • Jiménez, C. and Crews, P, 1993, Carbon-13 NMR assignments and cytotoxicity assessment of zoanthoxanthin alkaloids from zoanthid corals, J. Nat. Prod.,in press.

    Google Scholar 

  • Kakou, Y., Crews, P, and Bakus, G. J., 1987, Dendrolasin and latrunculin A from the Fijian sponge Spongia mycofijiensis (Bakus) and Chromodoris lochi, J. Nat. Prod. 50: 482–484.

    Article  CAS  Google Scholar 

  • Kashman, Y., and Rudi, A., 1977, The 13C-NMR spectrum and stereochemistry of heteronemin, Tetrahedron 33: 2997–2998.

    Article  CAS  Google Scholar 

  • Kashman, Y., Groweiss, A., and Shmueli, U., 1980, Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge Latrunculia magnifica, Tetrahedron Lett. 21: 3629–3632.

    Article  CAS  Google Scholar 

  • Kazlauskas, R., Murphy, P T., Quinn, R. J., and Wells, R. J., 1976, Heteronemin a new scalarin type sesterterpene from the sponge Heteronema erecta, Tetrahedron Lett. 196: 2631–2634.

    Article  Google Scholar 

  • Kazlauskas, R., Murphy, P T, Quinn, R. J., and Wells, R. J., 1977, Aplysinopsin, a new tryptophan from a sponge, Tetrahedron Lett. 977: 61–64.

    Article  Google Scholar 

  • Kazlauskas, R., Murphy, P T, Wells, R. J., Daly, J. J., and Schonholzer, P, 1978, Two sesquiterpene furans with new carbocyclic ring systems and related thiol acetates from a species of the sponge genus Dysidea, Tetrahedron Lett. 49: 4951–4954.

    Article  Google Scholar 

  • Keifer, P. A., Schwartz, R. E., Koker, M. E. S., Hughes, R. G. Jr., Rittschof, D., and Rinehart, K. L., 1991, Bioactive bromopyrrole metabolites from the Caribbean sponge Agelas conifera, J. Org. Chem. 56: 2965–2975.

    Article  CAS  Google Scholar 

  • Keister, D. B., 1983, Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile, Trans. R. Soc. Trop. Med. Hyg. 77: 487–488.

    Article  PubMed  CAS  Google Scholar 

  • Kepler, J. A., Philip, A., Lee, Y. W, Morey, M. C., and Carroll, F. I., 1988, 1,2,4-Trioxanes as potential antimalarial agents, J. Med. Chem 31: 713–716.

    Google Scholar 

  • Kitagawa, I., Yoshioka, N., Kamba, C., Yoshikawa, M., and Hamamoto, Y., 1987, Four new bisabolene-type aminosesquiterpenes from an Okinawan marine sponge, Theonella sp. (Theonellidae), Chem. Pharm. Bull. 35: 928–931.

    Article  CAS  Google Scholar 

  • König, G. M., Wright, A. D., Sticher, O., Jurcic, K., Offermann, F., Redl, K., Wagner, H., Angerhofer, C. K., and Pezzuto, J. M., 1991, Evaluation of the cytotoxic, antimalarial and antiinflammatory activities of compounds isolated from marine organisms, in: International Research Congress on Natural Products, 32nd Annual Meeting of the American Society of Pharmacognosy, Abstract P-129.

    Google Scholar 

  • Laurie, J. A., Moertel, C. G., Fleming, T. R., Wieand, H. S., Leigh, J. E., Rubin, J., McCormac, G. W, Gerstner, J. B., Crook, J. E., and Malliard, J., 1989, Surgical adjuvant therapy of large-bowel carcinoma: An evaluation of levamisole and the combination of levamisole and fluorouracil. A study of the north central cancer treatment group and the Mayo clinic, J. Clin. Oncol. 7: 1447–56.

    PubMed  CAS  Google Scholar 

  • Lee, R. H., Slate, D. L., Moretti, R., Alvi, K. A., and Crew, P., 1992, Marine sponge polyketide inhibitors of protein tyrosine kinase, Biochem. Biophys. Res. Commun. 184: 765–772.

    Article  PubMed  CAS  Google Scholar 

  • Li, W. R., Ewing, W. R., Harris, B. D., and Joullié, M. M., 1990, Total synthesis and structural investigations of didemnins A, B, and C, J. Am. Chem. Soc. 112: 7659–7672.

    Article  CAS  Google Scholar 

  • Litaudon, M., and Guyot, M., 1986, Ianthelline, un nouveau derivé de la dibromo-3,5-tyrosine, isolé de l’éponge lanthella ardis (Bahamas), Tetrahedron Lett. 27: 4455–4456.

    Article  CAS  Google Scholar 

  • Makarieva, T. N., Stonik, V. A., Alcolado, P., and Elyakov, Y. B., 1981, Comparative study of the halogenated tyrosine derivatives from demospongiae (Porifera), Comp. Biochem. Physiol. 68B: 481–484.

    Google Scholar 

  • Martin, S. K., Odvola, A. M. J., and Milhous, W. K., 1987, Reversal of chloroquine resistance in Plasmodium falciparum by verapamil, Science 235: 899–901.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, A. M. S., and Jacobs, R. S., 1988, Manoalide: An antiinflammatory and analgesic marine natural product, in: Biomedical Importance of Marine Organisms ( D. G. Fautin, ed.), California Academy of Sciences, San Francisco, pp. 125–132.

    Google Scholar 

  • McIntyre, D. E., Faulkner, D. J., Van Engen, D., and Clardy, J., 1979, Renierone, an antimicrobial metabolite from a marine sponge, Tetrahedron Lett. 1979: 4163–4166.

    Article  Google Scholar 

  • Medical Letter, 1988, Drugs for Parasitic Infections, Medical Letter on Drugs and Therapeutics, Medical Letter, Inc., Vol. 30, No. 759 (12 February).

    Google Scholar 

  • Miyamoto, T., Togawa, K., Higuchi, R., Komori, T., and Sasaki, T., 1990, Six newly identified biologically active triterpenoid glycoside sulfates from the sea cucumber Cucumaria echinata, Liebigs Ann. Chem. 1990: 453–460.

    Article  Google Scholar 

  • Moertel, C. G., Fleming, T. R., MacDonald, J. S., Haller, D. G., Laurie, J. A., Goodman, P. J., Ungerleider, J. S., Emerson, W. A., Tormey, D. C., and Glick, J. H., 1990, Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma, N. Engl. J. Med. 322: 352–358.

    Article  PubMed  CAS  Google Scholar 

  • Mons, B., and Sinden, R. E., 1990, Laboratory models for research in vivo and in vitro on malaria parasites of mammals: Current status, Parasitol. Today 6: 3–7.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. E., 1985, Structure of palytoxin, Prog. Chem. Org. Nat. Prod. 48: 81–202.

    CAS  Google Scholar 

  • Moore, R. E., Patterson, G. M. L., and Carmichael, W. W, 1988, New pharmaceuticals from cultured blue-green algae, in: Biomedical Importance of Marine Organisms ( D. G. Fautin, ed.), California Academy of Sciences, San Francisco, pp. 143–150.

    Google Scholar 

  • Munro, M. H. G., Luibrand, R. T., and Blunt, J. W, 1987, The search for antiviral and anticancer compounds from marine organisms, Bioorgan. Mar. Chem. 1: 94–176.

    Google Scholar 

  • Murata, M., Legrand, A. M., Ishibashi, Y., Fukui, M., and Yasumoto, T., 1990, Structures and configurations of ciguatoxin from the moray eel Gymnothorax javanicus and its likely precursor from the dinoflagellate Gambierdiscus toxicus, J. Am. Chem. Soc. 112: 4380–4386.

    Article  CAS  Google Scholar 

  • Myers, B. L., and Crews, P, 1983, Chiral ether glycerides from a marine sponge, J. Org. Chem. 48: 3583–3585.

    Article  CAS  Google Scholar 

  • Nakamura, H., Kobayashi, Y., Ohizumi, Y., and Hirata, Y., 1982, Isolation and structure of aaptamine, a novel heteroaromatic substance possessing a-blocking activity from the sea sponge Aaptos aaptos, Tetrahedron Lett. 23: 5555–5558.

    Article  CAS  Google Scholar 

  • Nakamura, H., Ohizumi, Y., Kobayashi, J., and Hirata, Y., 1984, Keramadine, a novel antagonist of serotonergic receptors isolated from the Okinawan sea sponge Agelas sp., Tetrahedron Leu. 25: 2475–2479.

    Article  CAS  Google Scholar 

  • Nakamura, H., Wu, H., Kobayashi, J., Makamura, Y., and Ohizumi, Y., 1985, Puralin, a novel enzyme activator from the Okinawan marine sponge Psammaplysilla purea, Tetrahedron Leu. 26: 45174520.

    Google Scholar 

  • Nakamura, H., Kobayashi, J., and Ohizumi, Y., 1987, Aaptamines. Novel benzo[de][1,6]naphthyridines from the Okinawan marine sponge Aaptos aaptos, J. Chem Soc. Perkin Trans. 1987: 173–176.

    Google Scholar 

  • Nigrelli, R. E, Jakowska, S., and Calventi, I., 1959, Ectyonin, an antimicrobial agent from the sponge Microciona prolifera, Zoologica 44: 173–176.

    CAS  Google Scholar 

  • Norte, M., Rodriguez, M. L., Fernandez, J. J., Eguren, L., and Estrada, D. M., 1988, Aplysinadiene and (R,R) 5 [3,5-dibromo-4-[(2-oxo-5-oxazolidinyl)] methoxyphenyl]-2-oxazolidinone, two novel metabolites from Aplysina aerophoba. Synthesis of aplysinadiene, Tetrahedron 44: 49734980.

    Google Scholar 

  • Norton, R. S., Croft, K. D., and Wells, R. J., 1981, Polybrominated oxydiphenol derivatives from the sponge Dysidea herbacea, Tetrahedron 37: 2341–2349.

    Article  CAS  Google Scholar 

  • Omar, S., Albert, C., Fanni, T., and Crews, P., 1988, Polyfunctional diterpene isonitriles from a marine sponge, Acanthella cavernosa, J. Org. Chem. 53: 5971–5972.

    Article  CAS  Google Scholar 

  • Peters, W, 1989, Changing pattern of antimalarial drug resistance, J. R. Soc. Med. 82: 14–17.

    PubMed  Google Scholar 

  • Pettit, G. R., Kamano, Y., Herald, C. L., and Tozawa, M., 1984, Structure of bryostatin 4. An important antineoplastic constituent of geographically diverse Bugula neritina (Bryozoa), J. Am. Chem. Soc. 106: 6768–6771.

    Article  CAS  Google Scholar 

  • Pettit, G. R., Kamano, Y., Herald, C. L., lìtinman, A. A., Boettner, F. E., Kiza, H., Schmidt, J. M., Baczynskyj, L., Tomer, K. B., and Bontems, R. J., 1987, The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10, J. Am. Chem. Soc. 109: 6883–6885.

    Article  CAS  Google Scholar 

  • Powis, G., 1991, Trends Pharmacol. Sci. 12: 188–194.

    Article  PubMed  CAS  Google Scholar 

  • Quinoa, E., and Crews, P, 1987, Novel sponge derived amino acids 6. Phenolic constituents of Psammaplysilla, Tetrahedron Lett. 28: 3229–3232.

    Article  CAS  Google Scholar 

  • Quinoa, E., Adamczeski, M., and Crews, P, 1986, Bengamides, heterocyclic anthelmintics from a Jaspidae marine sponge, J. Org. Chem. 51: 4494–4497.

    Article  CAS  Google Scholar 

  • Quinoa, E., Kakou, Y., and Crews, P, 1988, Fijianolides, polyketide heterocycles from a marine sponge, J. Org. Chem. 53: 3642–3644.

    Article  CAS  Google Scholar 

  • Reed, J. K., and Pomponi, S. L., 1989, Biomedical research in the sea, a search for drugs and novel compounds, in: Diving for Science, 1989; Proceedings of the American Academy of Underwater Sciences Ninth Annual Scientific Diving Symposium ( M. A. Lang and W. C. Jaap, eds.), American Academy of Underwater Sciences, Costa Mesa, California, pp. 273–287.

    Google Scholar 

  • Richou, O., Vaillancourt, V., Faulkner, D. J., and Albizati, K. F., 1989, Synthesis and absolute configuration of (—)-Furodysinin. New transformations of camphor derivatives, J. Org. Chem. 54: 4729–4730.

    Article  CAS  Google Scholar 

  • Rinehart, K. L., Gloer, J. B., Cook, J. C., Mizsak, S. A., and Scahill, T. A., 1981, Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Caribbean tunicate, J. Am. Chem. Soc. 103: 1857–1859.

    Article  CAS  Google Scholar 

  • Rinehart, K. L., Kishore, V., Nagarajan, S., Lake, R. J., Gloer, J. B., Bozich, F. A., Li, K. M., Maleczka, R. E., Todsen, W L., Munro, M. H. G., Sullins, D. W, and Sakai, R., 1987, Total synthesis of didemnins A, B, and C, J. Am. Chem. Soc. 109: 6846–6848.

    Article  CAS  Google Scholar 

  • Rodriguez, A. D., Akee, R. K., and Scheuer, P J., 1987, Two bromotyrosine-cysteine derived metabolites from a sponge, Tetrahedron Lett. 28: 4989–4992.

    Article  CAS  Google Scholar 

  • Rodriguez, J., Quinoa, E., Riguera, R., Peters, B. M., Abrell, L. M., and Crews, P., 1992, The structures and stereochemistry of cytotoxic sesquiterpene quinones from Dactylospongia elegans, Tetrahedron Lett. 48: 6667–6680.

    Article  CAS  Google Scholar 

  • Roll, D. M., Scheuer, P J., Matsumoto, G. K., and Clardy, J., 1983, Halenaquinone, a pentacyclic polyketide from a marine sponge, J. Am. Chem. Soc. 105: 6177–6178.

    Article  CAS  Google Scholar 

  • Roll, D. M., Chang, C. W. J., Scheuer, P J., Gray, G. A., Shoolery, J. N., Matsumoto, G. K., Van Duyne, G. D., and Clardy, J., 1985, Structure of the psammaplysins, J. Am. Chem. Soc. 107: 2916–2920.

    Article  CAS  Google Scholar 

  • Roll, D. M., Ireland, C. M., Lu, H. S. M., and Clardy, J., 1988, Fascaplysin, an unusual antimicrobial pigment from the marine sponge Fascaplysinopsis sp., J. Org. Chem. 53: 3276–3278.

    Article  CAS  Google Scholar 

  • Salva, J., and Faulkner, D. J., 1990, Metabolites of the sponge Strongylophora durissima from Maricaban Island, Philippines, J. Org. Chem. 55: 1941–1943.

    Article  CAS  Google Scholar 

  • Schmidt, U., Siegel, W, and Mundinger, K., 1988, Total synthesis of jaspamide (jasplakinolide) and geodiamolide A and B-1. Stereoselective synthesis of (2S,4E,6R,8S)-8-hydroxy-2,4,6trimethy1–4-nonenoic acid, Tetrahedron Lett. 28: 1269–1270.

    Article  Google Scholar 

  • Schwart, R. E., Yunker, M. B., Scheuer, P J., and Ottersen, T., 1976, Constituents of bathyal marine organisms: A new zoanthoxanthin from a coelenterate, Tetrahedron Lett. 26: 2235–2238.

    Google Scholar 

  • Scott, V. R., and Matthews, T. R., 1987, The efficacy of an N-substituted imidazole, RS-49676, against a Trypanosoma cruzi infection in mice, Am. J. Trop. Med. Hyg. 37: 308–313.

    PubMed  CAS  Google Scholar 

  • Sharma, G. M., and Magdoff-Fairchild, B., 1977, Natural products of marine sponges 7. The constitution of weakly basic guanidine compounds, dibromophakellin and monobromophakellin, J. Org. Chem. 42: 4118–4124.

    Article  CAS  Google Scholar 

  • Sharma, G. M., Vig, B., Burkholder, P R., 1968, in: Drugs from the Sea (H. D. Freedenthal, ed.), Marine Technology Society, Washington D.C.

    Google Scholar 

  • Suffness, M., Newman, D. J., and Snader, K., 1989, Discovery and development of antineoplastic agents from natural sources, Bioorgan. Mar. Chem. 3: 132–168.

    Google Scholar 

  • Sullivan, B. W, Faulkner, D. J., Okamoto, K. T., Chen, M. H. M., and Clardy, J., 1986, (6R,75)-7Amino-7,8-dihydro-a-bisabolene, an antimicrobial metabolite from the marine sponge Halichondria sp., J. Org. Chem. 51: 5134–5136.

    Google Scholar 

  • Townsend, L. B., and Wise, D. S., 1990, The synthesis and chemistry of certain anthelmintic benzimidazoles, Parasitol. Today 6: 107–133.

    Article  PubMed  CAS  Google Scholar 

  • Vagelos, P. R., 1991, Are prescription drug prices high? Science 252: 1080–1084.

    Article  PubMed  CAS  Google Scholar 

  • Van den Bossche, H., and Janssen, P A. J., 1969, Biochemical mechanism of action of antinematodal drug tetramisole, Biochem. Pharmacol. 18: 35–39.

    Article  PubMed  Google Scholar 

  • Vanderah, D. J., and Schmitz, E. J., 1974, Marine natural products: Isolation of dendrolasin from the sponge Oligoceras hemorrhages, J. Nat. Prod. 38: 271–272.

    Google Scholar 

  • Van Tamelen, E. E., Placeway, C., Schiemenz, G. P., and Wright, I. G., 1969, Total synthesis of d,lajmalicine and emetine, J. Am. Chem. Soc. 91: 7359–7371.

    Article  Google Scholar 

  • Walker, R. P, Thompson, J. E., and Faulkner, D. J., 1980, Sesterterpenes from Spongia idia, J. Org. Chem. 45: 4976–4979.

    Article  CAS  Google Scholar 

  • West, R. R., Mayne, C. L., Ireland, C. M., Brinen, L. S., and Clardy, J., 1990, Plakinidines: Cytotoxic alkaloid pigments from the Fijian sponge Plakortis sp., Tetrahedron Lett. 23: 3271–3274.

    Article  Google Scholar 

  • White, A. T., Newland, H. S., Taylor, H. R., Erttmann, K. D., Williams, P. N., and Greene, B. M., 1986, Controlled trial and dose finding study of ivermectin for treatment of onchocerciasis, Trop. Med. Parasitol: 37: 96–97.

    Google Scholar 

  • Wu, H., Nakamura, H., Kobayashi, J., and Hirata, Y., 1986, Lipopurealins, novel bromotyrosine derivatives with long chain acyl groups, from the marine sponge Psammaplysilla purea, Experientia 42: 855–856.

    Article  CAS  Google Scholar 

  • Wright, A. E., Pomponi, S. A., McConnell, O. J., Kohmoto, S., and McCarthy, P. J., 1987, (+)Curcuphenol and (+)-curcudiol, sesquiterpene phenols from shallow and deep water collections of the marine sponge Didiscus flavus, J. Nat. Prod. 50: 976–978.

    Google Scholar 

  • Zabriskie, T. M., Klocke, J. A., Ireland, C. M., Marcus, A. H., Molinski, T. E, Faulkner, D. J., Xu, C., and Clardy, J. C., 1986, Jaspamide, a modified peptide from aJaspis sponge, with insecticidal and antifungal activity, J. Am. Chem. Soc. 108: 3123–3124.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crews, P., Hunter, L.M. (1993). The Search for Antiparasitic Agents from Marine Animals. In: Attaway, D.H., Zaborsky, O.R. (eds) Pharmaceutical and Bioactive Natural Products. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2391-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2391-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2393-6

  • Online ISBN: 978-1-4899-2391-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics