Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 365))

  • 125 Accesses

Abstract

CD40 is a 50kDA surface glycoprotein expressed predominantly on B cells, monocytes, dendritic cells, thymic epithelium and certain carcinomas.1–3 It is a member of the tumor necrosis factor receptor (TNFR) superfamily,4,5 a group of related type I transmembrane molecules which, in addition to CD40, includes both forms of TNFR, the low affinity nerve growth factor (NGF) receptor, CD27, CD30, OX40, 4-1BB, and Fas.6–9 Members of this family are characterized by the presence of multiple cysteine-rich repeats consisting of approximately 40 amino acids in the extracellular amino terminal domain.5 The average sequence homology between family members in the extracellular domain is around 25%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E.A. Clark and P.J. Lane, Regulation of human B-cell activation and adhesion, Annu. Rev. Immunol. 9:97 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. A.H. Galy and H. Spits, CD40 is functionally expressed on human thymic epithelial cells, J. Immunol. 149:775 (1992).

    PubMed  CAS  Google Scholar 

  3. M.R. Alderson, R.J. Armitage, T.W. Tough, L. Strockbine, W.C. Fanslow, and M.K. Spriggs, CD40 expression by human monocytes: Regulation by cytokines and activation of monocytes by the ligand for CD40., J. Exp. Med. 178:669 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. C.A. Smith, T. Davis, D. Anderson, L. Solam, M.P. Beckmann, R. Jerzy, S.K. Dower, D. Cosman, and R.G. Goodwin, A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins., Science 248:1019 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. S. Mallett and A.N. Barclay, A new superfamily of cell surface proteins related to the nerve growth factor receptor., Immunol. Today 12:220 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. D. Camerini, G. Walz, W.A.M. Loenen, J. Borst, and B. Seed, The T cell activation antigen CD27 is a member of the NGF/TNF receptor gene family., J. Immunol. 147:3165 (1991).

    PubMed  CAS  Google Scholar 

  7. H. Dürkop, U. Latza, M. Hummel, F. Eitelbach, B. Seed, and H. Stein, Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease., Cell 68:421 (1992).

    Article  PubMed  Google Scholar 

  8. N. Itoh, S. Yonehara, A. Ishii, M. Yonehara, S.-I. Mizushima, M. Sameshima, A. Hase, Y. Seto, and S. Nagata, The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis., Cell 66:233 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. M. Baens, M. Chaffanet, J.J. Cassiman, H. van den Berghe, and P. Marynen, Construction and evaluation of a hncDNA library of human 12p transcribed sequences derived from a somatic cell hybrid, Genomics 16:214 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. T.B. Barrett, G. Shu, and E.A. Clark, CD40 signaling activates CD 11a/CD 18 (LFA-1)-mediated adhesion in B cells., J. Immunol. 146:1722 (1991).

    PubMed  CAS  Google Scholar 

  11. J. Gordon, M.J. Millsum, G.R. Guy, and J.A. Ledbetter, Resting B lymphocytes can be triggered directly through the CDw40 (Bp50) antigen., J. Immunol. 140:1425 (1988).

    PubMed  CAS  Google Scholar 

  12. E.A. Clark and J.A. Ledbetter, Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50., Proc. Natl Acad. Sci. USA 83:4494 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. J. Banchereau, P. de Paoli, A. Valle, E. Garcia, and F. Rousset, Long term human B cell lines dependent on interleukin-4 and antibody to CD40., Science 251:70 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. H.H. Jabara, S.M. Fu, R.S. Geha, and D. Vercelli, CD40 and IgE: Synergism between anti-CD40 monoclonal antibody and interleukin-6 in the induction of IgE synthesis by highly purified human B cells., J. Exp.Med. 172:1861 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. K. Zhang, E.A. Clark, and A. Saxon, CD40 stimulation provides and IFN-γ-independent and IL-4-dependent differentiation directly to human B cells for IgE production., J. Immunol. 146:1836 (1991).

    PubMed  CAS  Google Scholar 

  16. H. Gascan, J.-F. Gauchat, G. Aversa, P. van Vlasselaer, and J.E. de Vries, Anti-CD40 monoclonal antibodies or CD4+ T cell clones and IL-4 induce IgG4 and IgE switching in purified human B cells via different signalling pathways., J. Immunol. 147:8 (1991).

    PubMed  CAS  Google Scholar 

  17. F. Rousset, E. Garcia, and J. Banchereau, Cytokine-induced proliferation and immunoglobulin production of human B lymphocytes triggered through their CD40 antigen, J. Exp. Med. 173:705 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. F. Rousset, E. Garcia, T. Defrance, C. Peronne, N. Vezzio, D.H. Hsu, R. Kastelein, K.W. Moore, and J. Banchereau, Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes, Proc. Natl. Acad. Sci. USA 89:1890 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. T. Defrance, B. Vanbervliet, F. Briere, I. Durand, F. Rousset, and J. Banchereau, Interleukin 10 and transforming growth factor beta cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A, J. Exp. Med. 175:671 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. Y.J. Liu, D.E. Joshua, G.T. Williams, C.A. Smith, J. Gordon, and I.C.M. MacLennon, Mechanism of antigen-driven selection in germinal centres., Nature 342:929 (1989).

    Article  PubMed  CAS  Google Scholar 

  21. N.G. Copeland and N.A. Jenkins, Development and applications of a molecular genetic linkage map of the mouse genome, Trends Genet. 7:113 (1991).

    PubMed  CAS  Google Scholar 

  22. R.C. Allen, R.J. Armitage, M.E. Conley, H. Rosenblatt, N.A. Jenkins, N.G. Copeland, M.A. Bedell, S. Edelhoff, C.M. Disteche, D.K. Simoneaux, W.C. Fanslow, J. Belmont, and M.K. Spriggs, CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome., Science 259:990 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. A. Aruffo, M. Farrington, D. Hollenbaugh, X. Li, A. Milatovich, S. Nonoyama, J. Bajorath, L.S. Grosmaire, R. Stenkamp, M. Neubauer, R.L. Roberts, R.J. Noelle, J.A. Ledbetter, U. Francke, and H.D. Ochs, The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome., Cell 72:291 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. D. Graf, U. Korthauer, H.W. Mages, G. Senger, and R.A. Kroczek, Cloning of TRAP, a ligand for CD40 on human T cells, Eur. J. Immunol. 22:3191 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. E.J. Mensink, A. Thompson, L.A. Sandkuyl, M.E. Kraakman, J.D. Schot, T. Espanol, and R.K. Schuurman, X-linked immunodeficiency with hyperimmunoglobulinemia M appears to be linked to the DXS42 restriction fragment length polymorphism locus, Hum. Genet. 76:96 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. M. Padayachee, C. Feighery, A. Finn, C. McKeown, R.J. Levinsky, C. Kinnon, and S. Malcolm, Mapping of the X-linked form of hyper-IgM syndrome (HIGM1) to Xq26 by close linkage to HPRT, Genomics 14:551 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. F.S. Rosen, S.V. Kevy, E. Merler, C.A. Janeway Jr., and D. Gitlin, Recurrent bacterial infections and dysgammaglobulinemia: Deficiency of 7S gamma-globulins in the presence of elevated 19S gamma-globulins., Pediatrics 28:182 (1961).

    PubMed  CAS  Google Scholar 

  28. L.D. Notarangelo, M. Duse, and A.G. Ugazio, Immunodeficiency with hyper-IgM (HIM), Immunodefic. Rev. 3:101 (1992).

    PubMed  CAS  Google Scholar 

  29. M.E. Conley, Molecular approaches to analysis of X-linked immunodeficiencies., Annu. Rev. Immunol. 10:215 (1992).

    Article  PubMed  CAS  Google Scholar 

  30. L. Mayer, S.P. Kwan, C. Thompson, H.S. Ko, N. Chiorazzi, T. Waldmann, and F. Rosen, Evidence for a defect in “switch” T cells in patients with immunodeficiency and hyperimmunoglobulinemia M, N. Engl. J. Med. 314:409 (1986).

    Article  PubMed  CAS  Google Scholar 

  31. J.P. DiSanto, J.Y. Bonnefoy, J.F. Gauchat, A. Fischer, and G. de Saint Basile, CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM, Nature 361:541 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. U. Korthauer, D. Graf, H.W. Mages, F. Briere, M. Padayachee, S. Malcolm, A.G. Ugazio, L.D. Notarangelo, R.J. Levinsky, and R.A. Kroczek, Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper IgM, Nature 361:539 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. D. Levitt, P. Haber, K. Rich, and M.D. Cooper, Hyper IgM immunodeficiency. A primary dysfunction of B lymphocyte isotype switching, J. Clin. Invest. 72:1650 (1983).

    Article  PubMed  CAS  Google Scholar 

  34. R.W. Hendriks, M.E. Kraakman, I.W. Craig, T. Espanol, and R.K. Schuurman, Evidence that in X-linked immunodeficiency with hyperimmunoglobulinemia M the intrinsic immunoglobulin heavy chain class switch mechanism is intact, Eur. J. Immunol. 20:2603 (1990).

    Article  PubMed  CAS  Google Scholar 

  35. W.C. Fanslow, D. Anderson, K.H. Grabstein, E.A. Clark, D. Cosman, and R.J. Armitage, Soluble forms of CD40 inhibit biological responses of human B cells., J. Immunol. 149:655 (1992).

    PubMed  CAS  Google Scholar 

  36. R.J. Armitage, T.W. Tough, B.M. Macduff, W.C. Fanslow, M.K. Spriggs, F. Ramsdell, and M.R. Alderson, CD40 ligand is a T-cell growth factor, Eur. J. Immunol. 23:2326 (1993).

    Article  PubMed  CAS  Google Scholar 

  37. W.C. Fanslow, K.N. Clifford, M. Seaman, M.R. Alderson, M.K. Spriggs, R.J. Armitage, and F. Ramsdell, Recombinant CD40-ligand exerts potent biological effects on T cells, J. Immunol, in press (1994).

    Google Scholar 

  38. H.-J. Gruss, D. Hirschstein, B. Wright, D. Ulrich, M.A. Caligiuri, L. Strockbine, R.J. Armitage, and S.K. Dower, Expression and function of CD40 on Hodgkin and Reed-Sternberg cells and the possible relevance for Hodgkin’s disease, Blood, in press (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spriggs, M.K. (1994). The Role of CD40 Ligand in Human Disease. In: Gupta, S., Paul, W.E., DeFranco, A., Perlmutter, R.M. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation V. Advances in Experimental Medicine and Biology, vol 365. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0987-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0987-9_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0989-3

  • Online ISBN: 978-1-4899-0987-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics