Skip to main content

Diffusion in Random Media

  • Chapter
Surveys in Applied Mathematics

Part of the book series: Surveys in Applied Mathematics ((SUAM))

Abstract

We present a survey of homogenization methods for diffusion equations with periodic and random diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Avellaneda, T. Hou and G. Papanicolaou, “Finite difference methods for partial differential equations with rapidly oscillating coefficients,” Math. Modeling and Num. Analysis, 25: 693–710 (1991).

    MATH  MathSciNet  Google Scholar 

  2. I. Babuska, “Solution of interface problems by homogenization I, II, III,” SIAM J. Math Analysis, 7: 603–634, 635-645, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Babuska, “Solution of interface problems by homogenization I, II, III,” SIAM J. Math Analysis, 8: 923–937 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composites, Kluwer (1989).

    Google Scholar 

  5. A. Bensoussan, J. L. Lions and G. Papanicolaou, “Boundary layer analysis in homogenization of diffusion equations with Dirichlet conditions in the half space,” in: Proc. of Intern. Symp. SDE, Kyoto 1976, pp. 21–40, edited by K. Ito, J. Wiley, New York (1978).

    Google Scholar 

  6. A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis of Periodic Structures, North Holland, (1978).

    Google Scholar 

  7. R. Caflisch, M. Miksis, G. Papanicolaou and Lu Ting, “Effective equations for wave propagation in bubbly liquids,” J. Fluid Dynamics, 153: 105–120 (1985).

    Google Scholar 

  8. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Wiley (1953).

    Google Scholar 

  9. G. Dal Maso, Introduction to Г-Convergence, Birkhäuser (1992).

    Google Scholar 

  10. E. DeGiorgi and S. Spagnolo, “Sulla convergenza degli integrali dell’ energia per operatori ellittici del secundo ordine,” Boll U.M.I., 8: 391–11 (1983).

    MathSciNet  Google Scholar 

  11. B. Engquist and T. Hou, “Particle method approximation of oscillatory solutions to hyperbolic partial differential equations,” SIAM J. Num. Anal., 26: 289–319, (1989).

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Figari, G. Papanicolaou and J. Rubinstein, The Point Interaction Approximation for Diffusion in Regions with Many Small Holes, Lecture Notes in Biomathematics, Vol. 70, Springer, 202-209 (1987).

    Google Scholar 

  13. H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid Dynamics, 5: 317–328 (1959).

    MATH  MathSciNet  Google Scholar 

  14. E. I. Hruslov and V A. Marchenko, Boundary Value Problems in Regions with Fine-Grained Boundaries, Naukova Duma, Kiev (1974).

    Google Scholar 

  15. M. Kac, “Probabilistic methods in some problems of scattering theory,” Rocky Mountain J. of Math., 4: 511–537,(1974).

    Article  MATH  Google Scholar 

  16. K. Kawazu, Y. Tamura and H. Tanaka, “Localization of diffusion processes in one-dimensional random environment,” J. Math. Soc. Japan, 44: 515–550 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  17. J. B. Keller, “Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders,” Journal of Appl. Physics, 34: 991–993 (1963).

    Article  MATH  Google Scholar 

  18. O. D. Kellogg, Foundations of Potential Theory, Dover (1953).

    Google Scholar 

  19. S. Kozlov, “The method of averaging and walks in inhomogeneous environments,” Russian Math Surveys 40: 97–128 (1985).

    Google Scholar 

  20. S. Kozlov, “Geometric aspects of averaging,” Russian Math. Surveys, 44: 91–144 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Kuchment, Floquet Theory for Partial Differential Equations, Birkhäuser, Basel (1993).

    Book  MATH  Google Scholar 

  22. R. Landauer, “Electrical conductivity in inhomogeneous media,” in: Electrical Transport and Optical Properties of Inhomogeneous Media, J. C. Garland and D. B. Tanner (eds.), Amer. Ins. Physics (1978).

    Google Scholar 

  23. J. C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1, Clarendon Press, Oxford (1881).

    Google Scholar 

  24. O. Oleinik, Mathematical Problems in Elasticity and Homogenization, North Holland (1992).

    Google Scholar 

  25. S. Ozawa, “Point interaction potential approximation for (−Δ + U)−1 and eigenvalues for the Laplacian on wildly perturbed domains,” Osaka, J. Math, 20: 923–937 (1983).

    MATH  MathSciNet  Google Scholar 

  26. G. Papanicolaou and S. R. S. Varadhan, “Boundary value problems with rapidly oscillating random coefficients,” Colloquia Mathematica Societatis Janos Bolyai 27, Random Fields, Esztergom (Hungary) 1979, North Holland, 835-873, (1982).

    Google Scholar 

  27. G. Papanicolaou and S. R. S. Varadhan, “Diffusion in regions with many small holes,” in: Proceedings of Vilnius Conference in Probability, B. Grigelionis ed., Springer Lecture Notes in Control and Information Sciences, vol. 25, 190-206 (1980).

    Google Scholar 

  28. J. W. S. Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of the medium,” Phil. Mag., 34: 481–502 (1892).

    Article  MATH  Google Scholar 

  29. A. S. Sangani and A. Acrivos, “The effective conductivity of a periodic array of spheres,” Proc. Roy. Soc. Lond. A, 386: 263 (1983).

    Article  Google Scholar 

  30. Ya. Sinai, Introduction to Ergodic Theory, Princeton University Press (1977).

    Google Scholar 

  31. Ya. Sinai, “Limit behavior of one-dimensional random walks in random environment,” Theor. Prob. Appl., 27: 247–258 (1982).

    MathSciNet  Google Scholar 

  32. M. Vogelius and G. Papanicolaou, “A projection method applied to diffusion in a periodic structure,” SIAM J. Appl Math., 42: 1302–1322 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  33. K. Yosida, Functional Analysis, Springer (1979).

    Google Scholar 

  34. J. M. Ziman, Principles of the Theory of Solids, Cambridge (1972).

    Google Scholar 

  35. M. Zuzovski and H. Brenner, “Effective conductivity of composite materials composed of cubic arrangements of spherical particles embedded in an isotropic matrix,” ZAMP, 28: 979–992 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Papanicolaou, G.C. (1995). Diffusion in Random Media. In: Keller, J.B., McLaughlin, D.W., Papanicolaou, G.C. (eds) Surveys in Applied Mathematics. Surveys in Applied Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0436-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0436-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0438-6

  • Online ISBN: 978-1-4899-0436-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics