Skip to main content

Reversed Somatotopical Representations in the Subthalamic Nucleus as Revealed by Cortical Inputs from the Primary Motor Cortex and the Supplementary Motor Area

  • Chapter
The Basal Ganglia V

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 47))

  • 103 Accesses

Abstract

Since discrete lesions in the subthalamic nucleus (STN) result in a violent form of dyskinesia, termed “hemiballism”, which is characterized by involuntary movements occurring in the contralateral limbs (Hamada and DeLong, 1992; Carpenter and Carpenter, 1951; Carpenter et al., 1950; Whittier and Mettler, 1949; Whittier, 1947; Martin, 1927), the STN has long been recognized to play crucial roles in somatic motor control (DeLong, 1990; Albin et al., 1989; Kitai and Kita, 1987). It seems a consensus that the STN, a driving force of the basal ganglia, is composed of a single set of body part representations which is restricted to the lateral STN (Wichmann et al., 1994; Alexander and Crutcher, 1990; DeLong et al., 1985; Hartmann-von Monakow et al., 1978). However, such a somatotopical map of the STN does not provide a scenario that explains the somatotopical specificity of ballistic movements when the nucleus is destroyed in varying degree (Hamada and DeLong, 1992; Carpenter and Carpenter, 1951; Carpenter et al., 1950; Whittier and Mettler, 1949; Whittier, 1947; Martin, 1927). Here, we report that dual sets of body part representations underlie the somatotopical organization in the STN. The first set of body part representations is transformed to the medial STN from the supplementary motor area (SMA) that is the secondary motor cortex involved in various aspects of motor behavior (Tanji, 1994; Wiesendanger, 1986), whereas the second set is transformed to the lateral STN from the primary motor cortex (MI). The somatotopical arrangements of these two distinct cortical inputs are reversed mediolaterally in the STN. This could reconcile with the occurrence of somatotopically-specific dyskinesias in hemiballism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albin, R.L., Young, A.B., and Penney, J.B., 1989, The functional anatomy of the basal ganglia disorders, Trends Neurosci. 12: 366–375.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, G.E., and Crutcher, M.D., 1990, Functional architecture of basal ganglia circuits: neural substrates of parallel processing, Trends Neurosci. 13: 266–271.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, M.B., and Carpenter, C.S., 1951, Analysis of somatotopic relations of the corpus Luysi in man and monkey, J. Comp. Neurol. 95: 349–370.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, M.B., Whittier, J.R., and Mettler, F.A., 1950, Analysis of choreoid hyperkinesia in the rhesus monkey. Surgical and pharmacological analysis of hyperkinesia resulting from lesions in the subthalamic nucleus of Luys, J. Comp. Neurol. 92: 293–332.

    Article  PubMed  CAS  Google Scholar 

  • DeLong, M.R., 1990, Primate models of movement disorders of basal ganglia origin, Trends Neurosci. 13: 281–285.

    Article  PubMed  CAS  Google Scholar 

  • DeLong, M.R., Crutcher, M.D., and Georgopoulos, A.P., 1985, Primate globus pallidus and subthalamic nucleus: functional organization, J. Neurophysiol. 53: 530–543.

    PubMed  CAS  Google Scholar 

  • Hamada, I., and DeLong, M.R., 1992, Excitotoxic acid lesions of the primate subthalamic nucleus result in transient dyskinesias of the contralateral limbs, J. Neurophysiol. 68: 1850–1858.

    PubMed  CAS  Google Scholar 

  • Hartmann-von Monakow, K., Akert, K., and Künzle, H., 1978, Projections of the precentrai motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey, Exp. Brain Res. 33: 395–403.

    Google Scholar 

  • Huerta, M.F., and Kaas, J.H., 1990, Supplementary eye field as defined by intracortical microstimulation: connections in macaques, J. Comp. Neurol. 293: 299–330.

    Article  PubMed  CAS  Google Scholar 

  • Huerta, M.F., Krubitzer, L.A., and Kaas, J.H., 1986, Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections, J. Comp. Neurol. 253: 415–439.

    Article  PubMed  CAS  Google Scholar 

  • Kitai, S.T., and Kita, H., 1987, Anatomy and physiology of the subthalamic nucleus: a driving force of the basal ganglia, in: The Basal Ganglia II: Structure and Function-Current Concepts (M.B. Carpenter, and A. Jayaraman, eds.), Advances in Behavioral Biology, vol 32, Plenum Press, New York, pp. 357–373.

    Chapter  Google Scholar 

  • Künzle, H., and Akert, K., 1977, Efferent connections of cortical, area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique, J. Comp. Neurol. 173: 147–164.

    Article  PubMed  Google Scholar 

  • Luppino, G., Matelli, M., Camarda, R.M., Gallese, V., and Rizzolatti, G., 1991, Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey, J. Comp. Neurol. 311: 463–482.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J.P., 1927, Hemichorea resulting from a local lesion of the brain (The syndrome of the body of Luys), Brain 50: 637–651.

    Article  Google Scholar 

  • Matsumura, M., Kojima, J., Gardiner, T.W., and Hikosaka, O., 1992, Visual and oculomotor functions of monkey subthalamic nucleus, J. Neurophysiol. 67:1615–1632.

    PubMed  CAS  Google Scholar 

  • Mitz, A.R., and Wise, S.P., 1987, The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping, J. Neurosci. 7: 1010–1021.

    PubMed  CAS  Google Scholar 

  • Parent, A., and Hazrati, L-N., 1993, Anatomical aspects of information processing in primate basal ganglia, Trends Neurosci. 16: 111–116.

    Article  PubMed  CAS  Google Scholar 

  • Sessle, B.J., and Wiesendanger, M., 1982, Structural and functional definition of the motor cortex in the monkey (Macaca fascicularis), J. Physiol. (London) 323: 245–26

    CAS  Google Scholar 

  • Shook, B.L., Schlag-Rey, M., and Schlag, J., 1991, Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei, J. Comp. Neurol. 307: 562–583.

    Article  PubMed  CAS  Google Scholar 

  • Stanton, G.B., Goldberg, M.E., and Bruce, C.J., 1988, Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields, J. Comp. Neurol. 271: 473–492.

    Article  PubMed  CAS  Google Scholar 

  • Tanji, J., 1994, The supplementary motor area in the cerebral cortex, Neurosci. Res. 19: 251–268.

    Article  PubMed  CAS  Google Scholar 

  • Tanji, J., and Shima, K., 1994, Role for supplementary motor area cells in planning several movements ahead, Nature 371: 413–416.

    Article  PubMed  CAS  Google Scholar 

  • Tanji, J., Okano, K., and Sato, K.C., 1987, Relation of neurons in the nonprimary motor cortex to bilateral hand movement, Nature 327: 618–620.

    Article  PubMed  CAS  Google Scholar 

  • Whittier, J.R., 1947, Ballism and the subthalamic nucleus (nucleus hypothalamicus; corpus Luysi). Review of the literature and study of thirty cases, Arch. Neurol. Psychiat. 58: 672–692.

    Article  PubMed  CAS  Google Scholar 

  • Whittier, J.R., and Mettler, F.A., 1949, Studies on the subthalamus of the rhesus monkey. II. Hyperkinesia and other physiologic effects of subthalamic lesions, with special reference to the subthalamic nucleus of Luys, J. Comp. Neurol. 90:319–372.

    Article  PubMed  CAS  Google Scholar 

  • Wichmann, T., Bergman, H., and DeLong, M.R., 1994, The primate subthalamic nucleus. I. Functional properties in intact animals, J. Neurophysiol. 72: 494–506.

    PubMed  CAS  Google Scholar 

  • Wiesendanger, M., 1986, Recent developments in studies of the supplementary motor area of primates, Rev. Physiol. Biochem. Pharmacol. 103: 1–59.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nambu, A., Takada, M., Tokuno, H., Inase, M. (1996). Reversed Somatotopical Representations in the Subthalamic Nucleus as Revealed by Cortical Inputs from the Primary Motor Cortex and the Supplementary Motor Area. In: Ohye, C., Kimura, M., McKenzie, J.S. (eds) The Basal Ganglia V. Advances in Behavioral Biology, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0194-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0194-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0196-5

  • Online ISBN: 978-1-4899-0194-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics