Skip to main content
  • 123 Accesses

Abstract

Therapeutic strategies for intervening in HIV disease currently include antiretroviral therapy, treatment and prophylaxis of opportunistic infections, antitumor therapy, immuno-modulator therapy, and immunologic restoration using the immune-based therapies described in this book. There are, however, some significant practical and theoretical difficulties with available antiretroviral agents. Although mortality and frequency of opportunistic infections are reduced in patients taking zidovudine, a complete and sustained improvement in immune status has not been achieved (Fischl et al., 1989). In addition, frequent toxic effects prevent many individuals from tolerating these drugs for extended periods (Richman et al., 1987). Recent in vitro evidence of retroviral resistance has also been presented, although the clinical importance of this is as yet unknown (Larder et al., 1989). In hopes of increasing efficacy and reducing toxicity, studies are now under way examining the potential role of combination therapies for HIV infection (Fauci, 1992). Such approaches include combined therapy with two or more agents from the same class [e. g., reverse transcriptase (RT) inhibitors] or from distinct classes with different mechanisms of action (e. g., RT inhibitors plus immunomodulators). Despite the major advances in treating HIV disease that have occurred in the past 5 years, it is clear that the need is still great for more efficacious, less toxic therapies with novel mechanisms of action. It is therefore important to explore and develop new modalities for the treatment of this deadly disease. Gene therapy, defined as the introduction of new genetic material into cells of an individual with resulting therapeutic benefit to the individual, may be an effective treatment for a variety of disorders (Anderson, 1984; Morgan and Anderson, 1993). Since HIV integrates itself into the host’s genome, AIDS can be considered an “acquired genetic disease” and thus potentially amenable to treatment using gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, M. A., and Miller, A. D., 1988, Identification of a signal in a murine retrovirus that is sufficient for packaging of nonretroviral RNA into virions, J. Virol. 62:3802–3806.

    PubMed  CAS  Google Scholar 

  • Alexander, I. E., Russell, D. W., and Miller, A. D., 1994, DNA-damaging agents greatly increase the transduction of nondividing cells by adeno-associated virus vectors, J. Virol. 68:8282–8287.

    PubMed  CAS  Google Scholar 

  • Anderson, W. F., 1984, Prospects toward human gene therapy, Science 226:401–409.

    Article  PubMed  CAS  Google Scholar 

  • Apperly, J. F., Luskey, B. D., and Williams, D. A., 1991, Retroviral gene transfer of human adenosine deaminase in murine hematopoietic cells: Effect of selectable marker sequences on long-term expression, Blood 78:310–317.

    Google Scholar 

  • Armentano, D., Yu, S. K., Kantoff, P. W., von Ruden, T., Anderson, W. F., and Gilboa, E., 1987, Effects of internal viral sequences on the utility of recombinant retroviral vectors, J. Virol. 61:1647.

    PubMed  CAS  Google Scholar 

  • Bahner, I., Zhou, C., Yu, X. J., Guatelli, J. C., and Kohn, D. B., 1993, Comparison of trans-dominant inhibitory mutant human immunodeficiency virus type 1 genes expressed by retroviral vectors in human T lymphocytes, J. Virol. 67:3199–3207.

    PubMed  CAS  Google Scholar 

  • Banda, N. K., Bernier, J., Kurahara, D. K., Kurrle, R., Haigwood, N., Sekaly, R. P., and Finkel, T. H., 1992, Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis, J. Exp. Med. 176:1099–1106.

    Article  PubMed  CAS  Google Scholar 

  • Blaese, R. M., Culver, K. W., Miller, A. D., Carter, C. S., Fleisher, T., Clerici, M., Shearer, G., Chang, L., Chiang, Y., Tolstoshev, P., Greenblatt, J. J., Rosenberg, S. A., Klein, H., Berger, M., Mullen, C. A., Ramsey, W. J., Muul, L., Morgan, R. A., and Anderson, W. F., 1995, T lymphocyte directed gene therapy for ADA deficiency (SCID): Results of the initial trial with 4 years of observation, Science 270:475–480.

    Article  PubMed  CAS  Google Scholar 

  • Bunnell, B. A., Muul, L. M., Donahue, R. E., Blaese, R. M., and Morgan, R. A., 1995, High-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes, Proc. Natl. Acad. Sci. USA 92:7739–7743.

    Article  PubMed  CAS  Google Scholar 

  • Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yee, J. K., 1993, Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and non-mammalian cells, Proc. Natl. Acad. Sci. USA 90:8033–8037.

    Article  PubMed  CAS  Google Scholar 

  • Carmichael, A., Jin, X., Sissons, P., and Borysiewicz, L., 1993, Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: Differential CTL responses to HTV-1 and Epstein-Barr virus in late disease, J. Exp. Med. 177:249–256.

    Article  PubMed  CAS  Google Scholar 

  • Challita, P.-M., and Kohn, D. B., 1994, Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo, Proc. Natl. Acad. Sci. USA 91:2567–2571.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. J., Banerjea, A. C., Hamison, G. G., Hagland, K., and Schubert, M., 1992, Multitarget-ribozyme directed to cleave at up to nine highly conserved HIV-1 env RNA regions inhibits HIV-1 replication-potential effectiveness against most presently sequenced HIV-1 isolates, Nucleic Acids Res. 20:4581–4589.

    Article  PubMed  CAS  Google Scholar 

  • Chuah, M. K. L., VandenDriessche, T., Chang, H., Ensoli, B., and Morgan, R. A., 1994, Inhibition of human immunodeficiency virus type-1 by retroviral vectors expressing antisense TAR, Hum. Gene Then 5:1467–1475.

    Article  CAS  Google Scholar 

  • Culver, K. C., Morgan, R. A., Osborne, W. R. A., Lee, T., Lenscow, D., Able, C., Cornetta, K., Anderson, W. R., and Blaese, R. M., 1990, In vivo expression and survival of gene-modified T lymphocytes in rhesus monkeys, Hum. Gene Ther. 1:399–409.

    Article  PubMed  CAS  Google Scholar 

  • Danos, O., and Mulligan, R. C., 1988, Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges, Proc. Natl. Acad. Sci. USA 85:6460–6464.

    Article  PubMed  CAS  Google Scholar 

  • Duan, L., Bagasra, O., Laughlin, M. A., Oakes, J. W., and Pomerantz, R. J., 1994, Potent inhibition of human immunodeficiency virus type 1 by an intracellular anti-Rev single-chain antibody, Proc. Natl. Acad. Sci. USA 91:5075–5079.

    Article  PubMed  CAS  Google Scholar 

  • Ensoli, B., Barillari, G., Salahuddin, S.Z., Gallo, R. C., and Wong-Staal, F., 1990, Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients, Nature 344:84–86.

    Article  Google Scholar 

  • Esaich, S., Kalfoglou, C., Plavec, I., Kaushal, S., Mosca, J. D., and Bohnlein, E., 1995, RevM10-mediated inhibition of HIV-1 replication in chronically infected T-cells, Hum. Gene Ther. 6:625–634.

    Article  Google Scholar 

  • Fauci, A. S., 1992, Combination therapy for HIV infection: Getting closer, Ann. Intern. Med. 116:85–86.

    Article  PubMed  CAS  Google Scholar 

  • Fauci, A. S., Schnittman, S. M., Poli, G., Koenig, S., and Pantaleo, G., 1991, Immunopathogenic mechanisms in human immunodeficiency virus (HIV) infection, Ann. Intern. Med. 114:678–693.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, M. B., and Trono, D., 1992, Intracellular immunization: Trans-dominant mutants of HIV gene products as tools for the study and interruption of viral replication, AIDS Res. Hum. Retrovir. 8:1013–1022.

    Article  PubMed  CAS  Google Scholar 

  • Feigner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M., and Danielsen, M., 1987, Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure, Proc. Natl. Acad. Sci. USA 84:7413–7417.

    Article  Google Scholar 

  • Fischl, M. A., Richman, D. D., Causey, D. M., Grieco, M. H., Bryson, Y., Mildvan, D., Laskin, O. L., Groopman, J. E., Volberding, P. A., Schooley, R. T., Jackson, G. G., Durack, D. T., Andrews, J. C., Nusinoff-Lehrman, S., Barry, D. W., and the AZT Collaborative Working Group, 1989, Prolonged zidovudine therapy in patients with AIDS and advanced AIDS-related complex. AZT Collaborative Working Group, J. Am. Med. Assoc. 262:2405–2410.

    Article  CAS  Google Scholar 

  • Gilboa, E., and Smith, C., 1994, Gene therapy for infectious diseases: The AIDS Model, Trends Genet. 10:139–144.

    Article  PubMed  CAS  Google Scholar 

  • Halbert, C. L., Alexander, I. E., Wolgamot, G. M., and Miller, A. D., 1995, Adeno-associated virus vectors transduce primary cells much less efficiently than immortalized cells, J. Virol. 69:1473–1479.

    PubMed  CAS  Google Scholar 

  • Herskowitz, I., 1987, Functional inactivation of genes by dominant negative mutations, Nature 329:219–222.

    Article  PubMed  CAS  Google Scholar 

  • Jolly, D., Chada, S., Townsend, K., De Jesus, C., Chang, S., Weinhold, K., Anderson, C.-G., Lynn, A., Bodner, M., Barber, J., and Warner, J., 1992, CTL cross reactivity between HIV strains, AIDS Res. Hum. Retrovir. 8:1369–1371.

    PubMed  CAS  Google Scholar 

  • Jowett, J. B., Planelles, V., Poon, B., Shah, N. P., Chen, M. L., and Chen, I. S. Y., 1995, The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2+ M phase of the cell cycle, J. Virol. 69:6304–6313.

    PubMed  CAS  Google Scholar 

  • Kinchington, D., Galpin, S., Jaroszewski, J., Ghosh, K., Sabasinghe, C., and Cohen, J. S., 1992, A comparison of gag, pol and rev antisense oligodeoxynucleotides as inhibitors of HIV-1, Antiviral Res. 17:53–62.

    Article  PubMed  CAS  Google Scholar 

  • Kohn, D., B., Weinberg, K. I., Parkman, R., Lenarsky, C., Crooks, G. M., Shaw, K., Hanley, M. E., Lawrence, K., Annett, G., Brooks, J. S., Wara, D., Elder, M., Bowen, T., Hershfield, M. S., Berenson, R. I., Moen, R. C., Mullen, C. A., and Blaese, R. M., 1994, Gene therapy for neonates with ADA-deficient SCID by retroviral-mediated transfer of the human ADA cDNA into umbilical cord CD34+ cells, J. Cell. Biochem. Suppl. 18A:238.

    Google Scholar 

  • Larder, B. A., Darby, G., and Richman, D. D., 1989, HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy, Science 243:1731–1734.

    Article  PubMed  CAS  Google Scholar 

  • Leavitt, M. C., Yu, M., Yamada, O., Kraus, G., Looney, D., Poeschla, E., and Wong-Staal, F., 1994, Transfer of an anti-HIV-1 ribozyme gene into primary human lymphocytes, Hum. Gene Then 5:1115–1120.

    Article  CAS  Google Scholar 

  • Ledley, F. D., 1995, Nonviral Gene Therapy: The promise of genes as pharmaceutical products, Hum. Gene Then 6:1129–1144.

    Article  CAS  Google Scholar 

  • Lee, S. W., Gallardo, H. F., Gilboa, E., and Smith, C., 1994, Inhibition of human immunodeficiency virus type 1 in human T cells by a potent Rev response element decoy consisting of the 13-nucleotide minimal Rev-binding domain, J. Virol. 68:8254–8264.

    PubMed  CAS  Google Scholar 

  • Lin, H., Parmacek, M. S., Marie, G., Boiling, S., and Leiden, J. M., 1990, Expression of recombinant genes in myocardium in vivo after direct injection of DNA, Circulation 82:2217–2221.

    Article  PubMed  CAS  Google Scholar 

  • Lisziewicz, J., Sun, D., Smythe, J., Lusso, P., Loni, F., Louie, A., Markham, P., Rossi, J., Reitz, M., and Gallo, R. C., 1993, Inhibition of human immunodeficiency virus type 1 replication by regulated expression of a polymeric Tat activation response RNA decoy as a strategy for gene therapy for AIDS, Proc. Natl. Acad. Sci. USA 90:8000–8004.

    Article  PubMed  CAS  Google Scholar 

  • Lu, S., Santoro, J. S., Fuller, D. H., Hayes, J. R., and Robinson, H. L., 1995, Use of DNAs expressing HIV-1 env and noninfectious HIV-1 particles to raise antibody-responses in mice, Virology 209:147–154.

    Article  PubMed  CAS  Google Scholar 

  • Malim, M. H., Bohnlein, S., Hauber, J., and Cullen, B. R., 1989, Functional dissection of the HIV-1 Rev trans-activator: Derivation of a transdominant repressor of rev function, Cell 58:205–214.

    Article  PubMed  CAS  Google Scholar 

  • Mann, R., Mulligan, R. C., and Baltimore, D., 1983, Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus, Cell 33:153–159.

    Article  PubMed  CAS  Google Scholar 

  • Marasco, W. A., Haseltine, W. A., and Chen, S. Y., 1993, Design intracellular expression, and activity of a human anti-human immunodeficiency virus type 1 gp120 single-chain antibody, Proc. Natl. Acad. Sci. USA 90:7889–7893.

    Article  PubMed  CAS  Google Scholar 

  • Markowitz, D., Goff, S., and Bank, A., 1988, A safe packaging cell line for gene transfer: Separating viral genes on two different plasmids, J. Virol. 62:1120–1124.

    PubMed  CAS  Google Scholar 

  • Mhashilkar, A. M., Bagley, J., Chen, S. Y., Szilvoy, A. M., Heiland, D. G., and Marasco, W. A., 1995, Inhibition of HIV-1 Tat-mediated LTR transactivation and HIV-1 infection by anti-Tat single chain intrabodies, EMBO J. 14:1542–1551.

    PubMed  CAS  Google Scholar 

  • Miller, A. D., 1992, Retroviral vectors, Curr. Top Microbiol. Immunol. 158:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Miller, A. D., and Buttimore, C., 1986, Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production, Mol. Cell. Biol. 6:2895.

    PubMed  CAS  Google Scholar 

  • Miller, A. D., Garcia, J. V., von Suhr, N., Lynch, M., Wilson, C., and Eden, M. V., 1991, Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus, J. Virol. 65:2220–2224.

    PubMed  CAS  Google Scholar 

  • Morgan, R. A., 1994, Retroviral vectors in human gene therapy, in: Human Viruses in Gene Therapy (J.-M. H. Vos, ed.), Academic Pres, San Diego, pp. 77–107.

    Google Scholar 

  • Morgan, R. A., and Anderson, W. F., 1993, Human gene therapy, Annu. Rev. Biochem. 62:191–217.

    Article  PubMed  CAS  Google Scholar 

  • Morvan, F., Porumb, H., Degols, G., Lefebvre, I., Pompon, A., Sproat, B. S., Rayner, B., McIvy, C., Lebl, B., and Imbach, J. L., 1993, Comparative evaluation of seven oligonucleotide analogues as potential antisense agents, J. Med. Chem. 36:280–287.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan, R. C., 1993, The basic science of gene therapy, Science 260:926–932.

    Article  PubMed  CAS  Google Scholar 

  • Muzyczka, N., 1992, Use of adeno-associated virus as a general transduction vector for mammalian cells, Curr. Top. Microbiol. Immunol. 158:97–129.

    Article  PubMed  CAS  Google Scholar 

  • Nabel, E. G., Gordon, D., Yang, Z.-Y., Xu, L., San, H., Plautz, G. E., Wu, B. Y., Gao, K., Huang, L., and Nabel, G. J., 1992, Gene transfer in vivo with DNA-liposome complexes: Lack of autoimmunity and gonadal localization, Hum. Gene. Then 3:649–656.

    Article  CAS  Google Scholar 

  • Pantaleo, G., Koenig, S., Baseler, M., Lane, H. C., and Fauci, A. S., 1990, Defective clonogenic potential of CD8+ lymphocytes in patients with AIDS: Expansion in vivo of a nonclonogenic CD3+ CD8+ DR+ CD25 — T cell population, J. Immunol. 144:1696–1704.

    PubMed  CAS  Google Scholar 

  • Ragheb, J. A., Bressler, P., Daucher, M., Chiang, L., Chuah, M. K. L., VandenDriessche, T., and Morgan, R. A., 1996, Analysis of transdominant mutants of the HIV-1 rev protein for their ability to inhibit Rev function, HIV-1 replication, and their use as anti-HIV gene therapeutics, AIDS Res. Hum. Retrovir. 11:1343–1353.

    Article  Google Scholar 

  • Reusser, P., Riddell, S. R., Meyers, J. D., and Greenberg, P. D., 1991, Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: Pattern of recovery and correlation with cytomegalovirus infection and disease, Blood 78:1373–1380.

    PubMed  CAS  Google Scholar 

  • Richman, D. D., Fischl, M. A., Grieco, M. H., Gottlieb, M. S., Volberding, P. A., Laskin, O. L., Leedom, J. M., Groopman, J. E., Mildvan, D., Hirsch, M. S., Jackson, G. G., Durack, D. T., Nusinoff-Lehrman, S., and the AZT Collaborative WorkingGroup, 1987, The toxicity of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex: A double-blind, placebo-controlled trial, N. Engl. J. Med. 317:192–197.

    Article  PubMed  CAS  Google Scholar 

  • Riddell, S. R., Greenberg, P. D., Overell, R. W., Loughran, T. P., Gilbert, M. J., Lupton, S. O., Agosti, J., Scheeler, S., Coombs, R. W., and Corey, L., 1992, Phase I study of cellular adoptive immunotherapy using genetically modified CD8+ HIV-specific T-cells for HIV seropositive patients undergoing allogeneic bone marrow transplant, Hum. Gene Ther. 3:319–338.

    Article  PubMed  CAS  Google Scholar 

  • Riddell, S. R., Elliott, M., Lewinsohn, D. A., Gilbert, M. J., Wilson, L., Manley, S. A., Lupton, S. D., Overell, R. W., Reynolds, T. C., Corey, L., and Greenberg, P. D., 1996, T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients, Nature Medicine 2:216–223.

    Article  PubMed  CAS  Google Scholar 

  • Rill, D. R., Moen, R. C., Buschle, M., Bartholomew, C., Foreman, N. K., Mirro, J., Jr., Krance, R. A., Ihle, J. N., and Brenner, M. K., 1992, An approach for the analysis of relapse and marrow reconstitution after autologous marrow transplantation using retrovirus-mediated gene transfer, Blood 79:2694–2700.

    PubMed  CAS  Google Scholar 

  • Rosenberg, S. A., Aebersold, P. M., Cornetta, K., Kasid, A., Morgan, R. A., Moen, R., Karson, E. M., Lotze, M. T., Yang, J. C., Topalien, S. L., Merino, M. J., Culver, K., Miller, A. D., Blaese, R. M., and Anderson, W. F., 1990, Gene transfer into humans: Immunotherapy of patients with advanced melanoma using tumor infiltrating lymphocytes modified by retroviral gene transduction, N. Engl. J. Med. 323:570–578.

    Article  PubMed  CAS  Google Scholar 

  • Samulski, R. J., 1994, Parvoviruses, in: Human Viruses in Gene Therapy (J.-M. H. Vos, ed.), Academic Press, San Diego, pp. 53–76.

    Google Scholar 

  • Sarver, N., Cantin, E. M., Chang, P. S., Zaia, J. A., Ladne, P. A., Stephens, D. A., and Rossi, J. J., 1990, Ribozymes as potential anti-HIV-1 therapeutic agents, Science 247:1222–1225.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, M. J., Plautz, G. E., Yang, Z.-Y, Xu, L., Gao, X., Huang, L., Nabel, E. G., and Nabel, G. J., 1992, Gene transfer in vivo with DNA-liposome complexes: Safety and acute toxicity in mice, Hum. Gene. Ther. 3:267–275.

    Article  PubMed  CAS  Google Scholar 

  • Sullenger, B. A., Gallardo, H. R., Ungers, G. E., and Gilboa, E., 1991, Analysis of trans-acting response decoy RNA-mediated inhibition of human immunodeficiency virus type 1 transactivation, J. Virol. 65:6811–6816.

    PubMed  CAS  Google Scholar 

  • Van Beusechem, V. W., Kukler, A., Heidt, P. J., and Valerio, D., 1992, Long-term expression of human adenosine deaminase in rhesus monkeys transplanted with retrovirus-infected bone-marrow cells, Proc. Natl. Acad. Sci. USA 89:7640–7644.

    Article  PubMed  Google Scholar 

  • VandenDriessche, T., Chuah, M. K. L., and Morgan, R. A., 1994, Gene therapy for acquired immune deficiency syndrome, in: AIDS Updates Volume 7(4) (V. T. DeVita, S. Hellman, and S. A. Rosenberg, eds.), Lippincott, Philadelphia, pp. 1–14.

    Google Scholar 

  • VandenDriessche, T., Chuah, M. K. L., Chiang, L., Chang, H. K., Ensoli, B., and Morgan, R. A., 1995, Inhibition of clinical HIV-1 isolates in primary CD4+ T lymphocytes by retroviral vectors expressing anti-HIV genes, J. Virol. 69:4045–4052.

    PubMed  CAS  Google Scholar 

  • Walker, B. D., and Plata, F., 1990, Cytotoxic T lymphocytes against HIV, AIDS 4:177–184.

    Article  PubMed  CAS  Google Scholar 

  • Walker, R., 1993, A study of the safety and survival of the adoptive transfer of genetically marked syngeneic lymphocytes in HIV-infected identical twins, Hum. Gene Ther. 4:659–680.

    Article  PubMed  CAS  Google Scholar 

  • Warner, J. F., Anderson, C.-G., Laube, I., Jolly, D. J., Townsend, K., Chada, S., and St. Louis, D., 1991, Induction of HIV-specific CTL and antibody responses in mice using retroviral vector-transduced cells, AIDS Res. Hum. Retrovir. 7:645–655.

    Article  PubMed  CAS  Google Scholar 

  • Woffendin, G., Yang, Z.-Y, Udaykumar, Xu, L., Yang, N. S., Sheehy, M. J., and Nabel, G. J., 1994, Nonviral and viral delivery of a human immunodeficiency virus protective gene into primary human T cells, Proc. Natl. Acad. Sci. USA 91:11581–11585.

    Article  PubMed  CAS  Google Scholar 

  • Wong-Staal, F., Yu, M., Yamada, O., et al., 1994, Development of ribozyme gene therapy against HIV, J. Cell Biochem. Suppl. 18A:221.

    Google Scholar 

  • Yang, Y., Vanin, E. F., Whitt, M. A., Fornerod, M., Zwart, R., Schneiderman, R. D., Grosveld, G., and Nienhuis, A. W., 1995, Inducible high-level production of infectious murine leukemia retroviral vector particles psuedotyped with vesicular stomatitis virus G envelope protein, Hum. Gene Ther. 6:1203–1213.

    Article  PubMed  CAS  Google Scholar 

  • Yu, M. Poeschla, E., and Wong-Staal, F., 1994, Progress towards gene therapy for HIV infection, Gene Then 1:13–26.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morgan, R.A. (1996). Gene Therapy. In: Gupta, S. (eds) Immunology of HIV Infection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0191-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0191-0_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0193-4

  • Online ISBN: 978-1-4899-0191-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics