Skip to main content

Mitogenic Cytokines Promote Apoptosis

Possible Roles in Cellular Homeostasis

  • Chapter
Programmed Cell Death

Abstract

Successful cell proliferation relies on the activation of genes involved in cell cycle progression and concurrent inhibition of the function of tumor suppressor genes. In addition, there is a need to maintain the viability in proliferating cells. In the absence of cell viability factors cell cycle progression is intrinsically linked to programmed cell death through apoptosis. Whereas much attention has been focused on the molecular description of cell cycle machinery and the apoptotic pathway, less attention has been paid to the mechanisms for maintenance of the cell viability while cells are progressing through the cell cycle. The interaction of mitogenic cytokines with their cognate receptors promotes entry to the S-phase of cell cycle. It has also been suggested that cytokines could directly provide cell survival signals based on the observations that cytokine withdrawal leads to apoptosis. However, it is not clear whether the mitogenic activities and the survival effects of these cytokines are exerted by a single biochemical mechanism or carried out through separate signaling pathways. It is, thus, important to establish whether the survival effects of cytokines are achieved directly or by synergizing with the action of survival factors present in the environment such as interstitial fluid or blood in vivo or culture medium in vitro. We have addressed this question by stimulating cells with cytokines in the presence or absence of exogenous serum in vitro. When incubated with cytokines in serum-free medium, several cell types underwent apoptosis, a phenomenon called cytokine-promoted apoptosis. Interestingly, we found that serum is the principle activator of the cell survival gene, Bcl-2; while mitogenic cytokines increase the expression of Bax. In this review, we discuss the relevance of cytokine-promoted apoptosis to the maintenance of cellular homeostasis during development and tumorigenesis.

Apoptosis, the main mechanism of programmed cell death, is a gene-directed process responsible for the elimination of excessive cells during development and detrimental cell types in pathophysiological situations (Wyllie et al., 1980). Aberrant apoptosis has been implicated in the etiology of cancer and the process of autoimmunity (Hale et al., 1996). It is also involved in the progression of some degenerative diseases as well as the evolution of drug resistance in tumors (Hickman, 1992). Deregulated expression of genes such as Bcl-2, loss of p53 expression, and autocrine activation of either apoptotic or antiapoptotic signal transduction pathways may all contribute to pathological apoptosis (McConkey et al., 1996).

Cell proliferation requires the modulation of at least two sets of genes: those that activate mitosis and those that maintain cell survival. The modulation of these genes is required to terminate cell cycle brakes, to activate cell cycle machinery, and to promote cell survival (Meikrantz and Schlegel, 1995). Much is known about the mechanisms of cell cycle promotion, the signals that regulate cell viability during cell cycle are yet to be determined.

Protooncogenes and tumor suppressor genes control and regulate cell cycle progression. In addition, both oncogenes and tumor suppressor genes play fundamental roles in the regulation of the pathways leading to programmed cell death (Chiarugi and Ruggiero, 1996). We have shown that the protooncogene c-Myc is required for activation-induced apoptosis in T cell hybridomas (Shi et al., 1992). Ectopic expression of Myc enhances cell cycle progression and, at the same time, promotes apoptosis of the cycling cells (Evan et al., 1992; Askew et al., 1993). It has also been shown that cyclin A and the CDK kinase inhibitor, p27, play fundamental roles in anti-IgM-induced apoptosis in B-cell lymphomas (Ezhevsky et al., 1996). This strongly suggests that cell cycle progression and apoptosis are tightly correlated, a notion which could have important implications in the understanding of the basic mechanisms regulating apoptosis. In this review, we explore the relationship between apoptosis and cell cycle progression by focusing on the recent studies in cytokine-promoted apoptosis, which will be important for the elucidation of the mechanisms by which normal cells manage to proliferate, and transformed cells undergo aberrant growth during tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alitalo, K., and Schwab, M. (1986). Oncogene amplification in tumor cells. Adv Cancer Res 47, 235–281.

    Article  PubMed  CAS  Google Scholar 

  • Askew, D.S., Ihle, J.N., and Cleveland, J.L. (1993). Activation of apoptosis associated with enforced Myc expression in myeloid progenitor cells is dominant to the suppression of apoptosis by interleukin-3 or erythropoietin. Blood 82, 2079–2087.

    PubMed  CAS  Google Scholar 

  • Blandino, G., Scardigli, R., Rizzo, M.G., Crescenzi, M., Soddu, S., and Sacchi, A. (1995). Wild-type p53 modulates apoptosis of normal, IL-3 deprived, hematopoietic cells. Oncogene 10, 731–737.

    PubMed  CAS  Google Scholar 

  • Borset, M., Medvedev, A.E., Sundan, A., and Espevik T. (1996). The role of the two TNF receptors in proliferation, NF-kappa B activation and discrimination between TNF and LT alpha signalling in the human myeloma cell line OH-2. Cytokine 8, 430–438.

    Article  PubMed  CAS  Google Scholar 

  • Branch, D.R., and Guilbert, L.J. (1996). Autocrine regulation of macrophage proliferation by tumor necrosis factor-alpha. Exp. Hematol. 24, 675–681.

    PubMed  CAS  Google Scholar 

  • Chiarugi, V., and Ruggiero, M. (1996). Role of three cancer “master genes” p53, Bell and c-Myc on the apoptotic process. Tumori. 82, 205–209.

    PubMed  CAS  Google Scholar 

  • Choi, M.S., Boise, L.H., Gottschalk, A.R., Quintans, J., Thompson, C.B., and Klaus, GG. (1995). The role of Bel-XL in CD40-mediated rescue from anti-mu-induced apoptosis in WEHI-231 B lymphoma cells. Eur. J. Immunol. 25, 1352–1357.

    Article  PubMed  CAS  Google Scholar 

  • Colombel, M., Olsson, C.A., Ng, P.Y., and Buttyan, R. (1992). Hormone-regulated apoptosis results from reentry of differentiated prostate cells onto a defective cell cycle. Cancer Res. 52, 4313–319.

    PubMed  CAS  Google Scholar 

  • Dimri, G.P., Nakanishi, M., Desprez, P.Y., Smith, J.R., and Campisi, J. (1996). Inhibition of E2F activity by the cyclin-dependent protein kinase inhibitor p21 in cells expressing or lacking a functional retinoblastoma protein. Mol. Cell. Biol. 16, 2987–2997.

    PubMed  CAS  Google Scholar 

  • Dubrez, L., Goldwasser, F., Genne, P., Pommier, Y., and Solary, E. (1995). The role of cell cycle regulation and apoptosis triggering in determining the sensitivity of leukemic cells to topoisomerase I and II inhibitors. Leukemia 9, 1013–1024.

    PubMed  CAS  Google Scholar 

  • Evan, G.I., Wyllie, A.H., Gilbert, C.S., Littlewood, T.D., Land, H., Brooks, M., Waters, C.M., Penn, L.Z., and Hancock, D.C. (1992). Induction of apoptosis in fibroblasts by c-Myc protein. Cell 69, 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Ewen, M.E. (1994). The cell cycle and the retinoblastoma protein family. Cancer Metastasis Rev. 13, 45–66.

    Article  PubMed  CAS  Google Scholar 

  • Ezhevsky, S.A., Toyoshima, H., Hunter, T., and Scott, D.W. (1996). Role of cyclin A and p27 in anti-IgM induced Gl growth arrest of murine B-cell lymphomas. Mol. Biol. Cell 7, 553–564.

    PubMed  CAS  Google Scholar 

  • Galaktionov, K., Chen, X., and Beach, D. (1996). Cdc25 cell-cycle phosphatase as a target of c-Myc. Nature 382, 511–517.

    Article  PubMed  CAS  Google Scholar 

  • Garte, S.J. (1993). The c-Myc oncogene in tumor progression. Crit Rev Oncogene 4, 435–449.

    CAS  Google Scholar 

  • Gartel, A.L., Serfas, M.S., and Tyner, A.L. (1996). p21-negative regulator of the cell cycle. Proc. Soc. Exp. Biol. Med. 213, 138–149.

    PubMed  CAS  Google Scholar 

  • Hale, A.J., Smith, C.A., Sutherland, L.C., Stoneman, V.E., Longthorne, V.L., Culhane, A.C., and Williams, G.T. (1996). Apoptosis: molecular regulation of cell death. Eur. J. Biochem. 236, 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, E.A., Bennett, M.R., Fanidi. A., and Evan, GI. (1994). c-Myc-vinduced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J 13, 3286–3295.

    PubMed  CAS  Google Scholar 

  • Harris, R.A., Hiles, I.D., Page, M.J., and O’Hare, M.J. (1995). The induction of apoptosis in human mammary luminal epithelial cells by expression of activated c-neu and its abrogation by glucocorticoids. Br. J. Cancer 72, 386–392.

    Article  PubMed  CAS  Google Scholar 

  • Hickman, JA. (1992). Apoptosis induced by anticancer drugs. Cancer Metastasis Rev 11, 121–139.

    Article  PubMed  CAS  Google Scholar 

  • Hiebert, S.W., Packham, G., Strom, D.K., Haffner, R., Oren, M., Zambetti, G., and Cleveland, J.L. (1995). E2F-1:DP-1 induces p53 and overrides survival factors to trigger apoptosis. Mol. Cell. Biol. 15, 6864–6874.

    PubMed  CAS  Google Scholar 

  • Higuchi, M., Singh, S., and Aggarwal, B.B. (1995). Characterization of the apoptotic effects of human tumor necrosis factor: development of highly rapid and specific bioassay for human tumor necrosis factor and lym-photoxin using human target cells. J. Immunol. Methods 178, 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, P.W., and Weinberg, RA. (1994). Tumor suppressor genes. Curr. Opin. Genet. Dev. 4, 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Hurlin, P.J., Ayer, D.E., Grandori, C., and Eisenman, R.N. (1994). The Max transcription factor network: involvement of Mad in differentiation and an approach to identification of target genes. Cold Spring Harb. Symp. Quant. Biol. 59, 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Janicke, R.U., Lee, F.H., and Porter, A.G. (1994). Nuclear c-Myc plays an important role in the cytotoxicity of tumor necrosis factor alpha in tumor cells. Mol. Cell. Biol. 14, 5661–5670.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, D.G., Schwarz, J.K., Cress, W.D., and Nevins, J.R. (1993). Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365, 349–352.

    Article  PubMed  CAS  Google Scholar 

  • Klefstrom, J., Vastrik, I., Saksela, E., Valle, J., Eilers, M., and Alitalo, K. (1994). c-Myc induces cellular susceptibility to the cytotoxic action of TNF-alpha. EMBO J. 13, 5442–5450.

    PubMed  CAS  Google Scholar 

  • Kondo S. (1995). Apoptosis by antitumor agents and other factors in relation to cell cycle checkpoints. J. Radiat. Res. (Tokyo) 36, 56–62.

    Article  CAS  Google Scholar 

  • Larsson, L.G., Pettersson, M., Oberg, F., Nilsson, K., and Luscher, B. (1994). Expression of mad, mxil, max and c-Myc during induced differentiation of hematopoietic cells: opposite regulation of mad and c-Myc. Oncogene 9, 1247–1252.

    PubMed  CAS  Google Scholar 

  • Lee, W.M. (1989). The Myc family of nuclear proto-oncogenes. Cancer Treat Res 47, 37–71.

    Article  PubMed  CAS  Google Scholar 

  • Lenardo, M.J. (1991). Interleukin-2 programs mouse alpha beta T lymphocytes for apoptosis. Nature 353, 858–861.

    Article  PubMed  CAS  Google Scholar 

  • Liebermann, D.A., Hoffman, B., and Steinman, R.A. (1995). Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11, 199–210.

    PubMed  CAS  Google Scholar 

  • MacLachlan, T.K., Sang, N., and Giordano, A. (1995). Cyclins, cyclin-dependent kinases and cdk inhibitors: implications in cell cycle control and cancer. Crit. Rev. Eukaryot. Gene Expr. 5, 127–156.

    Article  PubMed  CAS  Google Scholar 

  • Martin, K., Trouche, D., Hagemeier, C., and Kouzarides, T. (1995). Regulation of transcription by E2F1/DP1. J. Cell. Sci. Suppl. 19, 91–94.

    Article  PubMed  CAS  Google Scholar 

  • McConkey, D.J., Zhivotovsky, B., and Orrenius, S. (1996). Apoptosis-molecular mechanisms and biomedical implications. Mol. Aspects Med. 17, 1–110.

    Article  PubMed  CAS  Google Scholar 

  • Meikrantz, W, and Schlegel, R. (1995). Apoptosis and the cell cycle. J. Cell. Biochem. 58, 160–174.

    Article  PubMed  CAS  Google Scholar 

  • Miyashita, T., Harigai, M., Hanada, M., and Reed, J.C. (1994). Identification of a p53-dependent negative response element in the Bcl-2 gene. Cancer Res. 54, 3131–3135.

    PubMed  CAS  Google Scholar 

  • Miyashita, T., and Reed, J.C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human Bax gene. Cell 80, 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Montenarh, M. (1992). Biochemical, immunological, and functional aspects of the growth-suppressor/oncoprotein p53. Crit. Rev. Oncog. 3, 233–256.

    PubMed  CAS  Google Scholar 

  • Murray, M.J., Cunningham, J.M., Parada, L.F., Dautry, F., Lebowitz, P., and Weinberg, R.A. (1983). The HL-60 transforming sequence: a ras oncogene coexisting with altered Myc genes in hematopoietic tumors. Cell 33, 749–757.

    Article  PubMed  CAS  Google Scholar 

  • Nevins, J.R. (1992). E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258, 424–429.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, S., and Wang, E. (1995). Cells en route to apoptosis are characterized by the upregulation of c-fos, c-Myc, c-jun, cdc2, and RB phosphorylation, resembling events of early cell-cycle traverse. J. Cell. Biochem. 58, 135–150.

    Article  PubMed  CAS  Google Scholar 

  • Pica, F., Franzese, O., D’Onofrio, C., Bonmassar, E., Favalli, C., and Garaci E. (1996). Prostaglandin E2 induces apoptosis in resting immature and mature human lymphocytes: a c-Myc-dependent and Bcl-2-independent associated pathway. J. Pharmacol. Exp. Ther. 277, 1793–1800.

    PubMed  CAS  Google Scholar 

  • Radvanyi, L.G., Shi, Y.F., Mills, G.B., and Miller, R. (1996). Cell cycle progression out of Gl sensitizes primarycultured nontransformed T cells to TCR-mediated apoptosis. Cell. Immunol. 170:260–273.

    Article  PubMed  Google Scholar 

  • Rabizadeh, S., Oh, J., Zhong, L.T., Yang, J., Bitler, C.M., Butcher, L.L., and Bredesen, D.E. (1993). Induction of apoptosis by the low-affinity NGF receptor. Science 261, 345–348.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J.H., White, C.L., Loh, D.L., and Meleedy-Rey, P. (1991). Receptor-stimulated death pathway is opened by antigen in mature T cells. Proc. Natl. Acad. Sci, U.S.A., 88, 2151–2155.

    Article  PubMed  CAS  Google Scholar 

  • Shan, B., and Lee, W.H. (1994). Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell. Biol. 14, 8166–8173.

    PubMed  CAS  Google Scholar 

  • Shi, Y.S, Bissonnette, R.P, Glynn, J.M, Cotter, T.G., Guilbert, J.L., and Green, D.R. (1992). Inhibition of activation-induced apoptosis in T cell hybridomas by antisense oligodeoxynucleotides corresponding to c-Myc. Science 257, 212–214.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y.S., Radvanyi, L.G., Mills, G.B., and Miller, R.G. (1995). CD28 ligation inhibits TCR-induced apoptosis during a primary T cell response and prevents induction of T cell hyporesponsiveness. J. Immunol. 156, 1788–1798.

    Google Scholar 

  • Spencer, C.A., and Groudine, M. (1991). Control of c-Myc regulation in normal and neoplastic cells. Adv. Cancer Res. 56, 1–48.

    Article  PubMed  CAS  Google Scholar 

  • Tiwari, R.K., Wong, G.Y., Liu, J., Miller, D., and Osborne, M.P. (1991). Augmentation of cytotoxicity using combinations of interferons (types I and II), tumor necrosis factor-alpha, and tamoxifen in MCF-7 cells. Cancer Lett. 61, 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Ucker, D.S. (1991). Death by suicide: one way to go in mammalian cellular development? New Biol. 3, 103–109.

    PubMed  CAS  Google Scholar 

  • Vairapandi, M., Balliet, A.G., Fornace, A.J. Jr, Hoffman, B., and Liebermann, D.A. (1996). The differentiation primary response gene MyD118, related to GADD45, encodes for a nuclear protein which interacts with PCNA and p21 WAF1/CIP1. Oncogene 12, 2579–2594.

    PubMed  CAS  Google Scholar 

  • Wong, G.H. Protective roles of cytokines against radiation: induction of mitochondrial MnSOD. Biochim. Biophys. Acta. 1271, 205-209.

    Google Scholar 

  • Wu, S., Pena, A., Korcz, A., Soprano, D.R., and Soprano, K.J. (1996). Overexpression of Mxil inhibits the induction of the human ornithine decarboxylase gene by the Myc/Max protein complex. Oncogene 12, 621–629.

    PubMed  CAS  Google Scholar 

  • Wyllie, A.H., Kerr, J.F.R., and Currie, A.R. (1980). Cell death: The significance of apoptosis. Int. Rev. Cytol. 68, 251–306.

    Article  PubMed  CAS  Google Scholar 

  • Zola H. (1996). Analysis of receptors for cytokines and growth factors in human disease. Dis. Markers 12, 225–240.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shi, Y., Mills, G.B., Wang, R. (1997). Mitogenic Cytokines Promote Apoptosis. In: Shi, YB., Shi, Y., Xu, Y., Scott, D.W. (eds) Programmed Cell Death. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0072-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0072-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0074-6

  • Online ISBN: 978-1-4899-0072-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics