Skip to main content

Brain Cytochrome Oxidase

Functional Significance and Bigenomic Regulation in the CNS

  • Chapter
Book cover Cytochrome Oxidase in Neuronal Metabolism and Alzheimer’s Disease

Abstract

Cytochrome oxidase is a ubiquitous housekeeping enzyme that holds one of the important keys to life. As a major oxidative enzyme and an energy-generating enzyme, cytochrome oxidase serves as a reliable indicator of neurons’ oxidative capacity and energy metabolism. The tight coupling between energy metabolism and neuronal activity further enables cytochrome oxidase to serve as a sensitive metabolic marker for neuronal functional activity, which includes firing rates of neurons and slow depolarizing potentials occurring primarily in dendrites. In the past two decades, much has been learned about the heterogeneous distribution of cytochrome oxidase in neurons at the regional, laminar, cellular and subcellular levels. The local activity of cytochrome oxidase is correlated with the physiological activity of each area, cell, or subcellular compartment. Regions of high cytochrome oxidase activity are dominated by excitatory, glutamatergic synapses. Changes in the physiological activity of neurons can induce parallel changes in the activity of cytochrome oxidase in developing and adult systems. Cytochrome oxidase activity is controlled mainly by regulation of protein amount, which is regulated transcriptionally. Being bigenomically encoded, cytochrome oxidase is under complex interactive regulation of both mitochondrial and nuclear gene expression. Cytochrome oxidase subunit complementary DNAs were isolated from a murine complementary DNA library, cloned and sequenced. Transcripts from the two genomes have distinct subcellular as well as compartmental distributions suggestive of different regulatory mechanisms. Antibodies generated against subunit proteins from the two genomes also showed differential distributions among neuronal compartments. Nuclear-encoded subunits are translated exclusively in the cell bodies and are delivered intramitochondrially to distal processes. A precursor pool exists in dendrites, where further processing of nuclear-encoded subunits and holoenzyme assembly are presumably governed by local energy demands. Under normal and functionally altered states, cytochrome oxidase activity is linked more closely to transcripts and subunit proteins derived from mitochondrial than from nuclear sources. This indicates that local cytochrome oxidase activity in neurons is controlled mainly by regulation of the mitochondrial genes that encode the catalytic subunits of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attardi, G. and Schatz, G. (1988). Biogenesis of mitochondria. Annu. Rev. Cell Biol., 4, 289–333.

    PubMed  CAS  Google Scholar 

  • Ausubel F.M., Brent R.. Kingston R.E., Moore D.D., Seidman J.G., Smith J.A. and Struhl K. (1994). Current Pm-locals in Molecular Biology. John Wiley and Sons, New York.

    Google Scholar 

  • Azzi, A. and Muller. M. (1990). Cytochrome c oxidase: polypeptide composition, role of subunits, and location of active metal centers. Arch. Biochem. Biophys., 280, 242–251.

    PubMed  CAS  Google Scholar 

  • Bachelard, H.S. Energy utilized by neurotransmitters. In D.H. ingvar and N.A. Lassen (Eds.), Brain Work: The Coupling of Function, Metabolism, and Blood Flow in the Brain, Alfred Benzorr Symposium VIII. Academic Press, New York, 1975, pp. 79–81.

    Google Scholar 

  • Basu, A. and Avadhani, N.G. (1991). Structural organization of nuclear gene for subunit Vb of mouse mitochondrial cytochrome e oxidase. J. Biol. Chem., 266, 15450–15456.

    PubMed  CAS  Google Scholar 

  • Bereiter-Hahn, J.. and M. Voth (1983). Metabolic control of shape and structure of mitochondria in situ. Biol. Cell, 47, 309–322.

    CAS  Google Scholar 

  • Bibb, M.J., Van Etten, R.A., Wright, C.T., Walverg, M.W. and Clayton, D.A. (1981). Sequence and gene organization of mouse mitochondrial DNA. Cell, 26, 167–180.

    PubMed  CAS  Google Scholar 

  • Blass, J.P., Sheu, R.K.-F. and Cedarbaum, J.M. (1988). Energy metabolism in disorders of the nervous system. Rey. Neurol. (Paris), 144, 543–563.

    CAS  Google Scholar 

  • Borowsky, I.W. and Collins, R.C. (1989). Histochemical changes in enzymes of energy metabolism in the dentate gyrus accompany deafferentation and synaptic reorganization. Neurosci., 33, 253–262.

    CAS  Google Scholar 

  • Brown, G.C., Crompton, M. and Wray, S. (1991). Cytochrome oxidase content of rat brain during development. Biochim. Biophys. Acta, 1057, 273–275.

    PubMed  CAS  Google Scholar 

  • Brown, M.D., Yang, C.-C., Trounce, I., Torroni, A., Lott, M.T. and Wallace, D.C. (1992). A mitochondrial DNA variant, identified in Leber Hereditary Optic Neuropathy patients, which extends the amino acid sequence of cytochrome c oxidase subunit 1. Am. J. Hum. Genet., 51, 378–385.

    PubMed  CAS  Google Scholar 

  • Capaldi, R.A. (1990). Structure and assembly of cytochrome c oxidase. Arch. Biochem. Biophys., 280, 252–262.

    PubMed  CAS  Google Scholar 

  • Capaldi R.A., Takamiya S., Zhang Y.Z., Gonzalez-Halphen D. and Yanamura W. (1987). Structure of cytochromes oxidase. Curi: Top. Bioenerg., 15, 91–112.

    CAS  Google Scholar 

  • Carroll, E.W. and Wong-Riley, M.T.T. (1984). Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey. J. Comp. Neurol., 222, 1–17.

    PubMed  CAS  Google Scholar 

  • Cohen, P.J. (1973). Effect of anesthetics on mitochondrial function. Anesthesiology, 39, 153–164.

    PubMed  CAS  Google Scholar 

  • Cohen, P. Well established systems of enzyme regulation by reversible phosphorylation. in R. Cohen (Ed.) Recently Discovered Systems of Enzyme Regulation by Reversible Phosphorylation. Elsevier/North-Holland Biomedical Press, Amsterdam, 1980a, pp. 1–10.

    Google Scholar 

  • Cohen, R. Protein phosphorylation and the co-ordinated control of intermediary metabolism. in P. Cohen (Ed.) Recently Discovered Systems of Enzyme Regulation by Reversible Phosphorylation. Elsevier/North-Holland Biomedical Press, Amsterdam, I980b, pp. 255–268.

    Google Scholar 

  • Collingridge, G.L. and Singer, W. (1990). Excitatory amino acid receptors and synaptic plasticity. Trends Pharm. Sci. 11, 290–296.

    PubMed  CAS  Google Scholar 

  • Creutzfeldt, O.D. Neurophysiological correlates of different functional states of the brain. In D.H. Ingvar and N.A. Lassen (Eds.), Brain Work. Alfred Benzon Symposium, VIII. Academic Press, New York, 1975, pp. 21–46.

    Google Scholar 

  • Darriet, D., Der T. and Collins, R.C. (1986). Distribution of cytochrome oxidase in rat brain: studies with diaminobenzidine histochemistry in vitro and [“C]cyanide tissue labeling in vivo. J. Cerebr. Blood Flow Metab., 6, 8–14.

    CAS  Google Scholar 

  • Dawson, T.M. and Snyder, S.H. (1994). Gases as biological messengers: Nitric oxide and carbon monoxide in the brain. J. Neurosci., 14, 5147–5159.

    PubMed  CAS  Google Scholar 

  • DeYoe, E.A., Trusk, T.C. and Wong-Riley, M.T.T. (1995). Activity correlates of cytochrome oxidase-defined compartments in granular and supragranular layers of primary visual cortex of the macaque monkey. Vis. Neurosci. 12, 629–639.

    PubMed  CAS  Google Scholar 

  • Dimlich, R.V.W., Showers, M.J. and Shipley, M.T. (1990). Densitometric analysis of cytochrome oxidase in ischemic rat brain. Brain Res., 516, 181–191.

    PubMed  CAS  Google Scholar 

  • DiRocco, R.J., Kageyama, G.H. and Wong-Riley, M.T.T. (1989). The relationship between CNS metabolism and cytoarchitecture: A review of “C-deoxyglucose studies with correlation to cytochrome oxidase histochemistry. Comput. Med. Imag. and Graph., 13, 81–92.

    CAS  Google Scholar 

  • Erecinska, M., and I.A. Silver (1989). ATP and brain function. J. Cereb. Blood Flow Metab., 9. 2–19.

    PubMed  CAS  Google Scholar 

  • Ernster, L., Luft, R. and Orrenius, S. (1995). Mitochondria) Diseases. Proceedings of Nobel Symposium 90. Biochim. Biophy. Acta, 1271, 1292.

    Google Scholar 

  • Errede B., Kamen M. D. and Hatefi Y. (1978). Preparation and properties of complex IV (ferrocytochrome c: oxygen oxidoreductase EC 1.9.3.]). Meth. En_ymol., 53, 40–47.

    CAS  Google Scholar 

  • Evans, M.J. and Scarpulla, R.C. (1990). NRF-l: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes ampand Dew., 4, 1023–1034.

    CAS  Google Scholar 

  • Fagg, G.E. (1985). L-Glutamate, excitatory amino acid receptors and brain function. Trends Neurosci., 8, 1–4.

    Google Scholar 

  • Fisher, R.P., Parisi, M.A. and Clayton, D.A. (1989). Flexible recognition of rapidly evolving promoter sequences by mitochondria) transcription factor 1. Genes ampand Dew., 3, 2202–2217.

    CAS  Google Scholar 

  • Fonnum, F. (1984). Glutamate: a neurotransmitter in mammalian brain. J. Newrochem., 42, 1–11.

    CAS  Google Scholar 

  • Forsburg, S.L. and Guarente, L. (1989). Communication between mitochondria and the nucleus in regulation of cytochrome genes in the yeast Saccharomyces cerevisiae. Amtu. Rev. Cell Biol., 5, 153–180.

    CAS  Google Scholar 

  • Garthwaite, J. (1991). Glutamate, nitric oxide and cell-cell signaling in the nervous system. Trends Neurosci., 14, 60–67.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Lima, F. Brain imaging of auditory learning functions in rats: Studies with fluorodeoxyglucoseautoradiography and cytochrome oxidase histochemistry. In F. Gonzalez-Lima, T. Finkenstadt, and H. Scheich (Eds.), Advances in Metabolic Mapping Techniques Ji r Brain Imaging of Behavioral and Learning Functions. NATO AS1 Series D. Vol. 68, Kluwer Academic Publishers, Dordrecht/Boston/London, 1992, pp. 39–109.

    Google Scholar 

  • Gonzalez-Lima, F. and Garrosa, M. (1991). Quantitative histochemistry of cytochrome oxidase in rat brain. Neuro-sci. Lett., 123, 251–253.

    Google Scholar 

  • Goto, Y., Naoki, A. and Taro, O. (1989). Nucleotide sequence of cDNA for rat brain and liver cytochrome c oxidase subunit IV. Nucleic Acids Res., 17, 2851.

    PubMed  CAS  Google Scholar 

  • Grafstein, B. and Forman, D.S. (1980). Intracellular transport in neurons. Physiol. Rev., 60, 1167–1283.

    PubMed  CAS  Google Scholar 

  • Gross, N.J., Getz, G.S. and Rabinowitz, M. (1969). Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondria) phospholipids in the tissues of the rat. J. Biol. Chem., 244, 1552–1562.

    PubMed  CAS  Google Scholar 

  • Grossman L.I., Rosenthal N.H., Akamatsu M. and Erickson R.P. (1995). Cloning, sequence analysis, and expression of a mouse cDNA encoding cytochrome c oxidase subunit VIa liver isoform. Biochim. Biophvs. Acta, 1260, 361–364.

    Google Scholar 

  • Harding, A.E. (1991). Neurological disease and mitochondrial genes. Trends Neurosci., 14, 132–138.

    PubMed  CAS  Google Scholar 

  • Hartl, F.U., Pfanner, N., Nicholson, D.W. and Neupert, W. (1989). Mitochondria] protein import. Biochim. Biophys. Acta, 988, 1–45.

    PubMed  CAS  Google Scholar 

  • Hatefi, Y. (1985). The mitochondrial electron transport and oxidative phosphorylation system. Anno. Rev. Biochem., 54, 1015–1069.

    CAS  Google Scholar 

  • Hevner, R.F. and Wong-Riley, M.T.T. (1989). Brain cytochrome oxidase: Purification, antibody generation, and immunohistochemical/histochemical correlations in the CNS. J. Neurosci., 9, 3884–3898.

    PubMed  CAS  Google Scholar 

  • Hevner, R.F. and Wong-Riley, M.T.T. (1990). Regulation of cytochrome oxidase protein levels by functional activity in the macaque monkey visual system. J. Neurosci., 10, 1331–1340.

    PubMed  CAS  Google Scholar 

  • Hevner, R.F. and Wong-Riley, M.T.T. (1991). Neuronal expression of nuclear and mitochondrial genes for cytochrome oxidase (CO) subunits analyzed by in situ hybridization: Comparison with CO activity and protein. J. Neurosci., 11, 1942–1958.

    Google Scholar 

  • Hevner, R.F. and Wong-Riley, M.T.T. (1993). Mitochondrial and nuclear gene expression for cytochrome oxidase subunits are disproportionately regulated by functional activity in neurons. J. Neurosci., 13, 1805–1819.

    PubMed  CAS  Google Scholar 

  • Hevner, R.F., Duff, R.S. and Wong-Riley, M.T.T. (1992). Coordination of ATP production and consumption in brain: Parallel regulation of cytochrome oxidase and Na’,K’-ATPase. Neurosci. Lett., 138, 188–192.

    PubMed  CAS  Google Scholar 

  • Hevner, R.F., Liu, S. and Wong-Riley, M.T.T. (1993). An optimized method for determining cytochrome oxidase activity in brain tissue homogenates. J. Neurosci. Meth., 50, 309–319.

    CAS  Google Scholar 

  • Hevner, R.F., Liu, S. and Wong-Riley, M.T.T. (1995). A metabolic map of cytochrome oxidase in the rat brain: Histochemical, densitometric and biochemical studies. Neurosci., 65, 313–342.

    CAS  Google Scholar 

  • Hicks, T.P., Lodge, D. and McLennan, H. (1987). Excitatory Amino Acid Transmission. Alan R. Liss, New York. Hood, D.A. (1990). Co-ordinate expression of cytochrome c oxidase subunit III and Vic mRNAs in rat tissues. Biochem. J., 269, 503–506.

    Google Scholar 

  • Hundt, E., Trapp, M. and Kadenbach, B. (1980). Biosynthesis of cytochrome c oxidase in isolated rat hepatocytes. FEBS Lett., 115, 95–99.

    PubMed  CAS  Google Scholar 

  • Hyde, G.E. and Durham, D. (1990). Cytochrome oxidase response to cochlea removal in chicken auditory brain-stem neurons. J. Comp. Neurol., 297, 329–339.

    PubMed  CAS  Google Scholar 

  • Ignacio, P.C., Baldwin, B.A., Vijayan, V.K., Tait, R.C. and Gorin, F.A. (1990). Brain isozyme of glycogen phosphorylase: Immunohistological localization within the central nervous system. Brain Res., 529, 42–49.

    PubMed  CAS  Google Scholar 

  • Isashiki, Y., Nakagawa, M. and Higuchi, I. (1991). Immunohistochemistry of the monkey retina with a monoclonal antibody against subunit V of cytochrome c oxidase. ACTA Ophthal., 69, 321–326.

    PubMed  CAS  Google Scholar 

  • Jaussi, R., Sonderegger, P., Fluckiger, J. and Christen, P. (1982). Biosynthesis and topogenesis of aspartate aminotransferase isoenzymes in chicken embryo fibroblasts. The precursor of the mitochondrial isoenzyme is either imported into mitochondria or degraded in the cytosol. J. Biol. Chem., 257, 13334–13340.

    PubMed  CAS  Google Scholar 

  • Jeffrey, P.L., James, K.A.C., Kidman, A.D., Richards, A.M. and Austin, L. (1972). The flow of mitochondria in chicken sciatic nerve. J. Neurobiol., 3, 199–208.

    PubMed  CAS  Google Scholar 

  • Kadenbach B. and Merle P. (1981). On the function of multiple subunits of cytochrome c oxidase from higher eukaryotes. FEBS Lett., 135, 1-I I.

    Google Scholar 

  • Kadenbach B., Hartmann R., Glanville R. and Buse G. (1982). Tissue-specific genes code for polypeptide Vla of bovine liver and heart cytochrome c oxidase. FEBS Lett., 138, 236–238.

    PubMed  CAS  Google Scholar 

  • Kadenbach, B., Jaraush, S., Hartmann, R. and Merle, P. (1983). Separation of mammalian cytochrome c oxidase into 13 polypeptides by a sodium dodecyl sulfate-gel electrophoresis procedure. Anal. Biochem., 129, 517–521.

    PubMed  CAS  Google Scholar 

  • Kageyama, G.H. and Wong-Riley, M.T.T. (1982). Histochemical localization of cytochrome oxidase in the hippocampus: Correlation with specific neuronal types and afferent pathways. Neurosci., 7, 2337–2361.

    CAS  Google Scholar 

  • Kageyama, G.H. and Wong-Riley, M.T.T. (1984). The histochemical localization of cytochrome oxidase in the retina and lateral geniculate nucleus of the ferret, cat, and monkey, with particular reference to retinal mosaics and ON/OFF-center visual channels. J. Neurosci., 4, 2445–2459.

    PubMed  CAS  Google Scholar 

  • Kageyama, G.H. and Wong-Riley, M.T.T. (1985). An analysis of the cellular localization of cytochrome oxidase in the lateral geniculate nucleus of the adult cat. J. Comp. Neurol., 242, 338–357.

    PubMed  CAS  Google Scholar 

  • Kaput, J., Goltz, S. and Blobel, G. (1982). Nucleotide sequence of the yeast nuclear gene for cytochrome c peroxidase precursor. J. Biol. Chem., 257, 15054–15058.

    PubMed  CAS  Google Scholar 

  • Katz, L.C., Gilbert, C.D. and Wiesel, T.N. (1989). Local circuits and ocular dominance columns in monkey striate cortex. J. Neurosci., 9, 1389–1399.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K. Coupling of neuronal metabolism and electrical activity. In D.H. Ingvar and N.A. Lassen (Eds.), Brain Work: The Coupling of Function, Metabolism, and Blood Flow in the Brain, Alfred Benzon Symposium VIII. Academic Press, New York, 1975, pp. 65–78.

    Google Scholar 

  • Krnjevic, K. Neurotransmitters in cerebral cortex: a general account, In E.G. Jones and A. Peter (Eds.), Cerebral Cortex, Vol. 2. Functional Properties of Cortical Cells. Plenum Press, New York, 1984, pp. 39–61.

    Google Scholar 

  • Krnjevic, K. and S. Schwartz (1966). The action of gamma-aminobutyric acid on cortical neurons. Exp. Brain Res., 3, 320–336.

    Google Scholar 

  • LaManna, J.C., Kutina-Nelson, K.L., Hritz, M.A., Huang, Z. and Wong-Riley, M.T.T. (1996). Decreased rat brain cytochrome oxidase activity after prolonged hypoxia. Brain Res., 720, 1–6.

    PubMed  CAS  Google Scholar 

  • Land, P.W. and Simons, D.J. (1985). Metabolic activity in Sml cortical barrels of adult rats is dependent on patterned sensory stimulation of the mystacial vibrissae. Brain Res., 341, 189–194.

    PubMed  CAS  Google Scholar 

  • Livingstone, M.S., and Hubel, D.H. (1984). Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci., 4, 309–356.

    PubMed  CAS  Google Scholar 

  • Liu, S., Wilcox, D.A., Sieber-Blum, M. and Wong-Riley, M. (1990). Developing neural crest cells in culture: Correlation of cytochrome oxidase activity with SSEA-I and dopamine beta-hydroxylase immunoreactivity. Brain Res., 535, 271–280.

    PubMed  CAS  Google Scholar 

  • Liu, S. and Wong-Riley, M.T.T. (1994). Nuclear-encoded mitochondrial precursor protein: Intramitochondrial delivery to dendrites and axon terminals of neurons and regulation by neuronal activity. J. Neurosci., 14, 5338–5351.

    PubMed  CAS  Google Scholar 

  • Lomax M.I. and Grossman L.I. (1989). Tissue-specific genes for respiratory proteins. Trends Biochem. Sci., 14, 501–503.

    PubMed  CAS  Google Scholar 

  • Lorenz, T. and Willard, M. (1978). Subcellular fractionation of intra-axonally transported polypeptides in the rabbit visual system. Proc. Natl. Acad. Sci. USA, 75, 505–509.

    CAS  Google Scholar 

  • Lowry, O.H. Energy metabolism in brain and its control. In D.H. Ingvar and N.A. Lassen (Eds.), Brain Work: The Coupling of Function, Metabolism, and Blood Flow in the Brain, Alfred Benzon Symposium VIII. Academic Press, New York, 1975, pp. 48–64.

    Google Scholar 

  • Luo, X.G., Hevner, R.F. and Wong-Riley, M.T.T. (1989). Double labeling of cytochrome oxidase and gamma aminobutyric acid in central nervous system neurons of adult cats. J. Neurosci. Meth., 30. 189–195.

    CAS  Google Scholar 

  • Maccecchini M.L., Rudin Y, Blobel G. and Schatz G. (1979). Import of proteins into mitochondria: precursor forms of the extramitochondrially made F 1-ATPase subunits in yeast. Proc. Natl. Acad. Sci. USA, 76, 343–347.

    PubMed  CAS  Google Scholar 

  • Malenka, R.C. and Nicoll, R.A. (1993). NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci., 16, 521–527.

    PubMed  CAS  Google Scholar 

  • Mata, M., D.J. Fink, H. Gainer, C.B. Smith, L. Davidsen, H. Savaki, W.J. Schwartz, and L. Sokoloff(1980). Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J. Neurochem., 34, 213–215.

    Google Scholar 

  • Mawe, G.M., and M.D. Gershon (1986). Functional heterogeneity in the myenteric plexus: Demonstration using cytochrome oxidase as a verified cytochemical probe of the activity of individual enteric neurons../. Comp. Neurol., 249, 381–391.

    CAS  Google Scholar 

  • Mita, S., Schmidt, B., Schon, E.A., DiMauro, S. and Bonilla, E. (1989). Detection of “deleted” mitochondrial genomes in cytochrome-c oxidase-deficient muscle fibers of a patient with Kearns-Sayre syndrome. Proc. Nail. Acad. Sci. USA, 86, 9509–9513.

    CAS  Google Scholar 

  • Mjaatvedt, A.E. and Wong-Riley M.T.T. (1986). Double-labeling of rat a-motoneurons for cytochrome oxidase and retrogradely transported [’H]WGA. Brain Res., 368, 178–182.

    PubMed  CAS  Google Scholar 

  • Mjaatvedt, A.E. and Wong-Riley M.T.T. (1988). Relationship between synaptogenesis and cytochrome oxidase activity in Purkinje cells of the developing rat cerebellum. J. Comp. Neurol., 277, 155–182.

    PubMed  CAS  Google Scholar 

  • Mjaatvedt, A.E. and Wong-Riley, M.T.T. (1991). Effects of unilateral climbing fiber deafferentation on cytochrome oxidase activity in the developing rat cerebellum.. 1. Newt’ evtol., 20, 2–16.

    CAS  Google Scholar 

  • Morgan-Hughes, J.A. (1986). Mitochondrial diseases. Trends Neurosci., 9, 15–19.

    CAS  Google Scholar 

  • Mori, M., Morita, T., Ikeda, F., Amaya, Y., Tatibana, M. and Cohen, P.P. (1981). Synthesis. intracellular transport, and processing of the precursors for mitochondrial ornithine transcarbamylase and carbamoylphosphate synthetase I in isolated hepatocytes. Proc. Natl. Acad. Sci. USA, 78, 6056–6060.

    PubMed  CAS  Google Scholar 

  • Morris, R.L. and Hollenbeck, P.J. (1993). The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci., 104, 917–927.

    PubMed  Google Scholar 

  • Munaro, M., Tiranti, V., Sandona, D., Lamantea, E., Uziel, G., Bisson, R. and Zeviani, M. (1997). A single cell complementation class is common to several cases of cytochrome c oxidase-defective Leigh’s syndrome. Hum. Mol. Genet., 6, 221–228.

    PubMed  CAS  Google Scholar 

  • Nakanishi, S. (1992). Molecular diversity of glutamate receptors and implications for brain function. Science, 258, 597–603.

    PubMed  CAS  Google Scholar 

  • Nie, F. and Wong-Riley, M.T.T. (1995). Double labeling of GABA and cytochrome oxidase in the macaque visual cortex: Quantitative EM analysis. J. Comp. Neurol., 356, 115–131.

    PubMed  CAS  Google Scholar 

  • Nie, F. and Wong-Riley, M.T.T. (1996a). Differential glutamatergic innervation in cytochrome oxidase-rich and–poor regions of the macaque striate cortex: Quantitative EM analysis of neurons and neuropil. J. Comp. Neurol., 369, 571–590.

    PubMed  CAS  Google Scholar 

  • Nie, F. and Wong-Riley, M.T.T. (1996b). Metabolic and neurochemical plasticity of g-aminobutyric acid-immunoreactive neurons in the adult macaque striate cortex following monocular impulse blockade: Quantitative electron microscopic analysis. J. Comp. Neural., 370, 350–366.

    CAS  Google Scholar 

  • Nie, F. and Wong-Riley, M. (1996c). Mitochondrial-and nuclear-encoded subunits of cytochrome oxidase in neurons: Differences in compartmental distribution, correlation with enzyme activity, and regulation by neuronal activity. J. Comp. Neurol., 373, 139–155.

    PubMed  CAS  Google Scholar 

  • Nobrega, J.N., Raymond, R., DiStefano, L. and Burnham, W.M. (1993). Long-term changes in regional brain cytochrome oxidase activity induced by electroconvulsive treatment in rats. Brain Res., 605, 1–8.

    PubMed  CAS  Google Scholar 

  • Palay, S.L. and Chan-Palay, V. (1974). Cerebellar Cortex. Springer, New York.

    Google Scholar 

  • Parisi, M.A., Xu, B. and Clayton, D.A. (1993). A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol. Cell. Biol., 13, 1951–1961.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, B., Elmer, K., Roggendorf, W., Reinhart, P.H., and Hamprecht, B. (1990). Immunohistochemical demonstration of glycogen phosphorylase in rat brain slices. Histochem., 94, 73–80.

    CAS  Google Scholar 

  • Poyton R.O., Trueblood C.E., Wright R.M. and Farrell L.E. (1988). Expression and function of cytochrome c oxidase subunit isologues. Ann. N.Y. Acad. Sci., 550, 289–307.

    PubMed  CAS  Google Scholar 

  • Reid, G.A., Yonetani, T. and Schatz, G. (1982). Import of proteins into mitochondria: import and maturation of the mitochondria) intermembrane space enzymes cytochrome b, and cytochrome c peroxidase in intact yeast cells. J. Biol. Chem., 257, 13068–13074.

    PubMed  CAS  Google Scholar 

  • Reimann, A., Huther, F.-J., Berden, J.A. and Kadenbach, B. (1988). Anions induce conformational changes and influence the activity and photoaffinity-labeling by 8-azido-ATP of isolated cytochrome c oxidase. Biochem. J., 254, 723–730.

    PubMed  CAS  Google Scholar 

  • Rosevear, P., VanAken, T., Baxter, J. and Ferguson-Miller, S. (1980). Alkyl glycoside detergents: a simpler synthesis and their effects on kinetic and physical properties of cytochrome c oxidase. Biochem., 19, 4108–4115.

    CAS  Google Scholar 

  • Ruscak, M., and Whittam, R. (1967). The metabolic response of brain slices to agents affecting the sodium pump. J. Physiol., 19, 595–610.

    Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. (1989). Molecular cloning: a laboratory manual, 2d ed. Cold Spring Harbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Sanger F., Nicklen S. and Coulson A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74, 5463–5467.

    PubMed  CAS  Google Scholar 

  • Scarpul la, R.C. (1997). Nuclear control of respiratory chain expression in mammalian cells. J. Bioenerg. Biomemb., 29, 109–119.

    Google Scholar 

  • Schimke, R.T. and Doyle, D. (1970). Control of enzyme levels in animal tissues. Annu. Rev. Biochem., 39, 929–976.

    PubMed  CAS  Google Scholar 

  • Schlerf A., Droste M., Winter M. and Kadenbach B. (1988). Characterization of two different genes (cDNA) for cytochrome c oxidase subunit Vla from heart and liver of the rat. EMBOJ., 7, 2387–2391.

    CAS  Google Scholar 

  • Schwartz, W.J. and Sharp, F.R. (1978) Autoradiographic maps of regional brain glucose consumption in resting, awake rats using [“C]2-deoxyglucose. J. Comp. Neurol., 177, 335–360.

    PubMed  CAS  Google Scholar 

  • Schwartz, W.J., C.B. Smith, L. Davidsen, H. Savaki, L. Sokiloff, M. Mata, D.J. Fink, and H. Gainer (1979). Metabolic mapping of functional activity in the hypothalamo-neurohypophyseal system of the rat. Science, 205, 723–725.

    PubMed  CAS  Google Scholar 

  • Schwerzmann, K., Hoppeler, H., Kayar, S.R. and Weibel, E.R. (1989). Oxidative capacity of muscle and mitochondria: Correlation of physiological, biochemical, and morphometric characteristics. Proc. Natl. Acad. Sci. USA, 86, 1583–1587.

    PubMed  CAS  Google Scholar 

  • Siegel, G., Agranoff, B., Albers, R.W. and Molinoff, P. (1989). Basic Neurochemistry. 4th ed. Raven Press, New York.

    Google Scholar 

  • Smith, L. and Camerino, P.W. (1963). The reaction of particle-bound cytochrome c oxidase with endogenous and exogenous cytochrome c. Biochem., 2, 1432–1439.

    CAS  Google Scholar 

  • Sokoloff, L. Changes in enzyme activities in neural tissues with maturation and development of the nervous system. In F.O. Schmitt and F.G. Worden (Eds.), The Neurosciences: Third Study Program. MIT Press, Cambridge, 1974, pp. 885–898.

    Google Scholar 

  • Sokoloff, L. (1981). Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J. Cereb. Blood Flow Metab., 1, 7–36.

    PubMed  CAS  Google Scholar 

  • Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada. O. and Shinohara, M. (1977). The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem., 28, 897–916.

    CAS  Google Scholar 

  • Suske, G., Enders, C., Schierl’, A. and Kadenbach, B. (1988). Organization and nucleotide sequence of two chromosomal genes for rat cytochrome c oxidase subunit Vic: a structural and a processed gene. DNA, 7, 163–171.

    PubMed  CAS  Google Scholar 

  • Taanman J.-W., Turina P. and Capaldi R.A. (1994). Regulation of cytochrome c oxidase by interaction of ATP at two binding sites, one on subunit VIa. Biochem., 33, 11833–11841.

    CAS  Google Scholar 

  • Thompson, C.C., Brown, T.A. and McKnight, S.L. (1991). Convergence of Ets-and notch-related structural motifs in a heteromeric DNA binding complex. Science, 253, 762–768.

    PubMed  CAS  Google Scholar 

  • Trembleau A., Morales M. and Bloom F.E. (1994). Aggregation of vasopressin mRNA in a subset of axonal swellings of the median eminence and posterior pituitary: Light and electron microscopic evidence. J. Neuro-sci., 14, 39–53.

    CAS  Google Scholar 

  • Vale, R.D., Schnapp, B.J., Reese, T.S. and Sheetz, M.P. (1985). Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell, 40, 449–454.

    PubMed  CAS  Google Scholar 

  • Vanneste, W.H., Ysebaert-Vanneste, M. and Mason, H.S. (1974). The decline of molecular activity of cytochrome oxidase during purification. J. Biol. Chem., 249, 7390–7401.

    PubMed  CAS  Google Scholar 

  • Viebrock, A., Perz, A. and Sebald, W. (1982). The imported preprotein of the proteolipid subunit of the mitochondrial ATP synthase from Neurospora crassa. Molecular cloning and sequencing of the mRNA. EMBO J., 1, 565–571.

    PubMed  CAS  Google Scholar 

  • Vik, S.B. and Capaldi, R. (1980). Conditions for optimal electron transfer activity of cytochrome c oxidase isolated from beef heart mitochondria. Biochem. Biophys. Res. Comm., 94. 348–354.

    PubMed  CAS  Google Scholar 

  • Virbasius, J.V. and Scarpulla, R.C. (1990). The rat cytochrome c oxidase subunit IV gene family: tissue-specific and hormonal differences in subunit IV and cytochrome c mRNA expression. Nucleic Acids Res., 18, 6581–6586.

    PubMed  CAS  Google Scholar 

  • Virbasius, J.V. and Scarpulla, R.C. (1994). Activation of the human mitochondria] transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl. Acad. Sci. USA, 91, 1309–1313.

    PubMed  CAS  Google Scholar 

  • Virbasius, J.V., Virbasius, C.A. and Scarpulla, R.C. (1993). Identity of GABP with NU-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Genes Dev., 7, 380–392.

    PubMed  CAS  Google Scholar 

  • Wallace, D.C. (1992). Diseases of the mitochondria] DNA. Annu. Rev. Biochem., 61, 1175–1212.

    PubMed  CAS  Google Scholar 

  • Wallace, D.C. (1995). 1994 William Allan Award Address: Mitochondria) DNA variation in human evolution, degenerative disease, and aging. Am. J. Hum. Genet., 57, 201–223.

    Google Scholar 

  • Warren, R., Tremblay, N. and Dykes, R.W. (1989). Quantitative study of glutamic acid decarboxylase-immunoreactive neurons and cytochrome oxidase activity in normal and partially deafferented rat hindlimb somatosensory cortex. J. Comp. Neurol., 288, 583–592.

    PubMed  CAS  Google Scholar 

  • Wharton D. C. and Tzagoloff A. (1967). Cytochrome oxidase from beef heart mitochondria. Meth. Enzymol., 10. 245–250

    CAS  Google Scholar 

  • Wikstrom M., Krab K. and Saraste M. (1981). Cytochrome Oxidase. A synthesis. Academic Press, New York.

    Google Scholar 

  • Williams, R.S. (1986). Mitochondrial gene expression in mammalian striated muscle: evidence that variation in gene dosage is the major regulatory event. J. Biol. Chem., 261, 12390–12394.

    PubMed  CAS  Google Scholar 

  • Williams, R.S. and Harlan, W. (1987). Effects of inhibition of mitochondrial protein synthesis in skeletal muscle. Am. J. Physiol., 253, C866–871.

    PubMed  CAS  Google Scholar 

  • Williams, R.S., Salmons, S., Newsholme, E.A., Kaufman, R.E. and Mellor, J. (1986). Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J. Biol. Chem., 261, 376–380.

    PubMed  CAS  Google Scholar 

  • Williams, R.S., Garcia-Moll, M., Mellor, J., Salmons, S. and Harlan, W. (1987). Adaptation of skeletal muscle to increased contractile activity: expression of nuclear genes encoding mitochondria) proteins. J. Biol. Chem., 262, 2764–2767.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res., 171, 11–28.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M.T.T. (1989). Cytochrome oxidase: An endogenous metabolic marker for neuronal activity. Trends Neurosci., 12, 94–101.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M.T.T. Primate Visual Cortex: Dynamic metabolic organization and plasticity revealed by cytochrome oxidase. In A. Peters and K. Rockland (Eds.), Cerebral Cortex, Vol. l0, Primary Visual Cortex in Primates. Plenum Press, New York, 1994, pp. 141–200.

    Google Scholar 

  • Wong-Riley, M.T.T. and Carroll, E.W. (1984a) Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in V II prestriate cortex of the squirrel monkey. J. Comp. Neural., 222, 18–37.

    CAS  Google Scholar 

  • Wong-Riley, M., and Carroll, E.W. (1984b). The effect of impulse blockage on cytochrome oxidase activity in the monkey visual system. Nature, 307, 262–264.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M.T.T. and Kageyama, G.H. (1986). Localization of cytochrome oxidase in the spinal cord and dorsal root ganglia, with quantitative analysis of ventral horn cells in monkeys. J. Comp. Neural., 245, 41–61.

    CAS  Google Scholar 

  • Wong-Riley, M.T.T. and Norton, T.T. (1988). Histochemical localization of cytochrome oxidase activity in the visual system of the tree shrew: Normal patterns and the effect of retinal impulse blockage.. 1. Comp. Neural., 272, 562–578.

    CAS  Google Scholar 

  • Wong-Riley, M., and Riley, D.A. (1983). The effect of impulse blockage on cytochrome oxidase activity in the cat visual system. Brain Res., 261, 185–193.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M.T.T. and Welt, C. (1980). Histochemical changes in cytochrome oxidase of cortical barrels following vibrissal removal in neonatal and adult mice. Proc. Natl. Acad. Sci., 77, 2333–2337.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M.T.T., Merzenich, M.M. and Leake, P.A. (1978). Changes in endogenous enzymatic reactivity to DAB induced by neuronal inactivity. Brain Re., 141, 185–192.

    CAS  Google Scholar 

  • Wong-Riley, M.T.T., Walsh, S.M., Leake-Jones, P.A., and Merzenich, M.M. (1981). Maintenance of neuronal activity by electrical stimulation of unilaterally deafened cats demonstrable with the cytochrome oxidase technique. Ann. Otol. Rhino). Laryngol. 90, Suppl. 82, 30–32.

    Google Scholar 

  • Wong-Riley, M.T.T., Tripathi, S.C., Trusk, T.C., and Hoppe, D.A. (1989a). Effect of retinal impulse blockage on cytochrome oxidase-rich zones in the macaque striate cortex. I. Quantitative EM analysis of neurons. Vis. Neurosci., 2, 483–497.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M, Trusk, T.C., Tripathi, S.C. and Hoppe, D.A. (1989b). Effect of retinal impulse blockage on cytochrome oxidase-rich zones in the macaque striate cortex. II. Quantitative EM analysis of neuropil. Vis. Neurosci., 2, 499–514.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M.T.T., Hevner, R.F., Cutlan, R., Earnest, M., Egan, R., Frost, J. and Nguyen, T. (1993). Cytochrome oxidase in the human visual cortex: Distribution in the developing and the adult brain. Vis. Neurosci., 10, 41–58.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M.T.T., Trusk, T.C., Kaboord, W., and Huang, Z. (1994). Effect of retinal impulse blockage on cytochrome oxidase-poor interpuffs in the macaque striate cortex: quantitative EM analysis of neurons. J. Neurocvtol.. 23. 533–553.

    CAS  Google Scholar 

  • Wong-Riley, M.T.T., Mullen, M.A., Huang, Z. and Guyer, C. (1997a). Brain cytochrome oxidase subunit complementary DNAs: Isolation, subcloning, sequencing, light and electron microscopic in situ hybridization of transcripts, and regulation by neuronal activity. Neurosci., 76, 1035–1055.

    CAS  Google Scholar 

  • Wong-Riley, M., Antuono, P., Ho, K.-C., Egan, R., Hevner, R., Liebl, W., Huang, Z., Rachel, R. and Jones, J. (1997b). Cytochrome oxidase in Alzheimer’s Disease: Biochemical, histochemical, and immunohistochemical analyses of the visual and other systems. Vision Research,Special issue on Alzheimer’s Disease and the Visual System, in press.

    Google Scholar 

  • Wong-Riley, M., Anderson, B., Liebl, W. and Huang, Z. (1998a). Neurochemical organization of the macaque striate cortex: Correlation of cytochrome oxidase with Na*K*ATPase, NADPH-diaphorase, nitric oxide synthase, and NMDA receptor subunit I. Neurosci.,in press.

    Google Scholar 

  • Wong-Riley, M.T.T., Huang, Z., Liebl, W., Nie, F., Xu, H. and Zhang, C. (1998b). Neurochemical organization of the macaque retina: Effect of TTX on levels and gene expression of cytochrome oxidase and nitric oxide synthase, and on the immunoreactivity of Na’K`ATPase and NMDA receptor subunit 1. Vis. Res.,in press.

    Google Scholar 

  • Woodford, B.J. and Blanks, J.C. (1989). Uptake of tritiated thymidine in mitochondria of the retina. Invest. Ophthabnol. Vis. Sci., 30, 2528–2532.

    CAS  Google Scholar 

  • Woodward, D.J., Hoffer, B.J., Siggins, G.R. and Bloom, F.E. (1971) The ontogenetic development of synaptic junctions, synaptic activation and responsiveness to neurotransmitter substances in rat cerebellar Purkinje cells. Brain Res., 34, 73–79.

    PubMed  CAS  Google Scholar 

  • Yamada, M., Amuro, N., Goto, Y. and Okazaki, T. (1990). Structural organization of the rat cytochrome e oxidase subunit IV gene. J. Biol. Chem., 265, 7687–7692.

    PubMed  CAS  Google Scholar 

  • Yip, V.S.. Zhang, W.-P., Woolsey, T.A. and Lowry, O.H. (1987). Quantitative histochemical and microchemical changes in the adult mouse central nervous system after section of the infraorbital and optic nerves. Brain Res., 406, 157–170.

    PubMed  CAS  Google Scholar 

  • Zhang, C. and Wong-Riley, M.T.T. (1996). Do nitric oxide synthase, NMDA receptor subunit RI and cytochrome oxidase co-localize in the rat central nervous system? Brain Res., 729, 205–215.

    PubMed  CAS  Google Scholar 

  • Zhang, C. and Wong-Riley, M.T.T. (1997). Effect of depolarization on cytochrome oxidase gene expression in primary neuronal culture of rat cortex. Soc. Neurosci. Ahstr., 23, 89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret T. T. Wong-Riley Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wong-Riley, M.T.T., Nie, F., Hevner, R.F., Liu, S. (1998). Brain Cytochrome Oxidase. In: Gonzalez-Lima, F. (eds) Cytochrome Oxidase in Neuronal Metabolism and Alzheimer’s Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9936-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9936-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9938-5

  • Online ISBN: 978-1-4757-9936-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics