Skip to main content

The Nature and Plasticity of Sensory Processing within Adult Rat Barrel Cortex

  • Chapter
The Barrel Cortex of Rodents

Part of the book series: Cerebral Cortex ((CECO,volume 11))

Abstract

The central tenet of the columnar hypothesis for sensory cortical organization (Mountcastle, 1957) is locus specificity; the idea of single columnar neuronal groups targeted by unimodal information from separate peripheral loci. Mountcastle conceived of the column as a single processing module, and implied that somatosensory cortex is constructed of an array of independent modules, each processing “labeled line” sensory information with uniform latency. The thinking behind the hypothesis is often a common starting point for theories of differentiation or modification of cortical neuronal groups in relation to learning (Edelman, 1978, 1987; Eccles, 1984; Changeux et al., 1984; Von der Malsberg, 1987). Processing within the column itself, or analogous neuronal groups has often relied on a black box approach to the neuronal group, using such devices as “hidden layers” and “back propagation” (Rumelhart et al., 1986; Zipser and Andersen, 1988). This maneuver has largely been required in the dearth of useful information on how spatiotemporal processing proceeds within sensory cortex (Douglas and Martin, 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agmon, A., and Connors, B. W., 1991, Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro, Neuroscience 41: 365–379.

    PubMed  CAS  Google Scholar 

  • Agmon, A., and Connors, B. W., 1992, Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex, J.Neurosci. 12:319–329.

    PubMed  CAS  Google Scholar 

  • Alloway, K. D., Rosenthal, P., and Burton, H., 1989, Quantitative measurements of receptive field changes during antagonism of GABAergic transmission in primary somatosensory cortex of cats, Exp. Brain Res. 78:524–532.

    Google Scholar 

  • Armstrong-James, M., 1975, The functional status and columnar organization of single cells responding to cutaneous stimulation in neonatal rat somatosensory cortex, SI, J. Physiol. (London). 246:501–538.

    CAS  Google Scholar 

  • Armstrong-James, M., 1989, NMDA and non-NMDA neurotransmission in the construction of receptive fields of rat barrel-field neurones, Soc. Neurosci. Abstr. 15:949.

    Google Scholar 

  • Armstrong-James, M., and Callahan, C, 1991, Thalamocortical mechanisms in the formation of receptive fields of rat barrel cortex neurones. II. The contribution of ventroposterior medial thalamic (VPm) neurones, J. Comp. Neurol. 303:211–224.

    PubMed  CAS  Google Scholar 

  • Armstrong-James, M., and Fox, K., 1983, Effects of iontophoresed noradrenaline on the spontaneous activity of neurones in rat primary somatosensory cortex, J. Physiol. (London). 335:427–448.

    CAS  Google Scholar 

  • Armstrong-James, M., and Fox, K., 1987, Spatio-temporal divergence and convergence in rat SI “barrel” cortex, J. Comp. Neurol. 263:265–281.

    PubMed  CAS  Google Scholar 

  • Armstrong-James, M., and Fox, K., (1988a), A role for NMDA receptors in slow-wave sleep, Brain Res. 451:189–196.

    PubMed  CAS  Google Scholar 

  • Armstrong-James, M., and Fox, K., 1988b, Functional development of cortical neurons, in: Cerebral Cortex, Vol. 7 (E. G. Jones and A. Peters, eds.), Plenum Press, New York.

    Google Scholar 

  • Armstrong-James, M., Callahan, C. A., and Friedman, M., 1991, Thalamocortical mechanisms in the formation of receptive fields of rat barrel cortex neurones. I. Intracortical mechanisms, J. Comp. Neurol. 303.193–210.

    PubMed  CAS  Google Scholar 

  • Armstrong-James, M., Fox, K., and Das-Gupta, A., 1992, Flow of excitation within barrel cortex on striking a single vibrissa, J. Neurophysiol. 68:1345–1358.

    PubMed  CAS  Google Scholar 

  • Armstrong-James, M., Welker, E., and Callahan, C. A., 1993, The contribution of NMDA and non-NMDA receptors to fast and slow transmission of sensory information in the rat SI barrel cortex, J. Neurosci. 13:2149–2160.

    PubMed  CAS  Google Scholar 

  • Artola, A., and Singer, W., 1987, Long-term potentiation and NMDA receptors in rat visual cortex, Nature. 330:649–652.

    PubMed  CAS  Google Scholar 

  • Artola, A., and Singer, W., 1990, The involvement of N-methyl-D-aspartate receptors in induction and maintenance of long-term potentiation in rat visual cortex, Eur.J. Neurosci. 2:254–269.

    PubMed  Google Scholar 

  • Axelrad, H., Verley, R., and Farkas, E., 1976, Responses evoked in mouse and rat SI cortex by vibrissa stimulation, Neurosci. Lett. 3:265–274.

    PubMed  CAS  Google Scholar 

  • Bernardo, K. L., McCasland, J., Woolsey, T. A., and Strominger, R. N., 1990, Local and intra-and interlaminar connections in mouse barrel cortex, J. Comp. Neurol. 291:231–255.

    PubMed  CAS  Google Scholar 

  • Blasdel, G. G., 1992, Orientation selectivity, preference, and continuity in monkey striate cortex, J. Neurosci. 12:3139–3161.

    PubMed  CAS  Google Scholar 

  • Bolz, J., Gilbert, G. D., and Wiesel, T. N., 1989, Pharmacological analysis of cortical circuitry, Trends Neurosci. 12:292–296.

    PubMed  CAS  Google Scholar 

  • Bullier, J., Mustari, M. J., and Henry, G. H., 1982, Receptive-field transformations between LGN neurons and S-cells of cat striate cortex, J. Neurophysiol. 47:417–438.

    PubMed  CAS  Google Scholar 

  • Changeux, J. P., Heidmann, T., and Patte, P., 1984, Learning by selection, in: The Biology of Learning (P. Marier and H. S. Terrace, eds.), Springer-Verlag, Berlin, pp. 15–133.

    Google Scholar 

  • Chapin, J. K., and Lin. G.-S., (1984), Mapping the body representation in the SI cortex of the anaesthetised and awake rat, J. Comp. Neurol. 299:199–213.

    Google Scholar 

  • Chapin, J. K., Waterhouse, B. D., and Woodward, D. J., 1981, Differences in the cutaneous sensory response of single somatosensory cortical neurons in awake and halothane anesthetized rats, Brain Res. Bull. 6:63–70.

    PubMed  CAS  Google Scholar 

  • Chapin, J. K., Sadeq, M., and Guise, L. U., 1987, Corticocortical connections within the primary somatosensory cortex of the rat, J. Comp. Neurol. 263:326–346.

    PubMed  CAS  Google Scholar 

  • Chmielowska, J., Kossut, M., and Chmielowski, M., 1986, Single vibrissal cortical column in the mouse labeled with 2-deoxyglucose, Exp. Brain Res. 63:606–619.

    Google Scholar 

  • Collingridge, G. L., and Bliss, T. V. P., 1987, NMDA receptors-Their role in long-term potentiation, Trends Neurosci. 10:288–293.

    CAS  Google Scholar 

  • Connors, B. W., Gutnick, M. J., and Prince, D. A., 1982, Electrophysiological properties of neocortical neurons in vitro, J. Neurophysiol. 48:1302.

    PubMed  CAS  Google Scholar 

  • Constantine-Paton, M., Cline, H. T, and Debski, E., 1990, Patterned activity, synaptic convergence and the NMDA receptor in developing visual pathways, Annu. Rev. Neurosci. 13:129–154.

    PubMed  CAS  Google Scholar 

  • Damasio, A. R., 1990, Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition, in: Neurobiology of Cognition (P. D. Eimas and A. M. Galaburda, eds.), MIT Press, Cambridge, MA, pp. 25–62.

    Google Scholar 

  • DeFreitas, J. B., and Stryker M. P., 1990, Visual activity and ocular dominance plasticity in cat visual cortex persist following specific blockade of non-NMDA glutamate receptors, Soc. Neurosci. Abrstr. 16:3317.

    Google Scholar 

  • Diamond, M. E., Armstrong-James, M., Budway, M. J., and Ebner, F. F., (1992a), Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus, J. Comp. Neurol. 318:462–476.

    PubMed  CAS  Google Scholar 

  • Diamond, M. E., Armstrong-James, M., Budway, M. J., and Ebner, F. F., (1992b), Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel cortex, J. Comp. Neurol. 319:66–84.

    PubMed  CAS  Google Scholar 

  • Diamond, M. E., Armstrong-James, M., and Ebner, F. F., 1993, Experience dependent plasticity in adult rat barrel cortex, Proc. Natl. Acad. Sci. USA. 90:2082–2085.

    PubMed  CAS  Google Scholar 

  • Douglas, R. J., and Martin, K. A. C, 1990, Opening the grey box, Trends Neurosci. 14:286–293.

    Google Scholar 

  • Durham, D., and Woolsey, T A., 1978, Acute whisker removal reduces neuronal activity in barrels of mouse SmI cortex, J. Comp. Neurol. 178:629–644.

    PubMed  CAS  Google Scholar 

  • Dykes, R. W., Landry, P., Metherate, R., and Hicks, T. P., 1984, Functional role of GAB A in cat primary somatosensory cortex: Shaping receptive fields of cortical neurons, J. Neurophysiol. 52:1066–1093.

    PubMed  CAS  Google Scholar 

  • Eccles, J. C, 1984, The cerebral neocortex: A theory of its operation, in: Cerebral Cortex, Vol. 2 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 1–36.

    Google Scholar 

  • Edelman, G. M., 1978, Group selection and phasic reentrant signalling: A theory of higher brain function, in: The Mindful Brain (G. M. Edelman and V. B. Mountcastle, eds.), MIT Press, Cambridge, MA, pp. 51–100.

    Google Scholar 

  • Edelman, G. M., 1987, Neural Darwinism: The Theory of Neuronal Group Selection, Basic Books, New York.

    Google Scholar 

  • Ferster, D., and Lindstrom, S., 1983, An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat, J. Physwl, (London). 342:181–215.

    CAS  Google Scholar 

  • Fox, K., 1992, A critical period for experience-dependent synaptic plasticity in rat barrel cortex, J. Neurosci. 12:1826–1838.

    PubMed  CAS  Google Scholar 

  • Fox, K., and Armstrong-James, M., 1986, The role of the anterior intralaminar nuclei and N-methyl D-aspartate receptors in the generation of spontaneous bursts in rat neocortical neurones, Exp. Brain Res. 63:505–518.

    PubMed  CAS  Google Scholar 

  • Fox, K., Sato, H., and Daw, N., 1991, The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex, J. Neurophysiol. 64:1413–1427.

    Google Scholar 

  • Fox, K., and Daw, N., 1993, Do NMDA receptors have a critical function in visual cortical plasticity? Trends Neurosci. 16:116–122.

    PubMed  CAS  Google Scholar 

  • Fox, K., Sato, H., and Daw, N., 1989, The location and function of NMDA receptors in cat and kitten visual cortex, J. Neurosci. 9:2443–2454.

    PubMed  CAS  Google Scholar 

  • Gardner, E. P., and Costanzo, R. M., (1980a), Spatial integration of multiple-point stimuli in primary somatosensory cortical receptive fields of alert monkey, J. Neurophysiol. 43:420–443.

    PubMed  CAS  Google Scholar 

  • Gardner, E. P., and Costanzo, R. M., (1980b), Temporal integration of multiple-point stimuli in primary somatosensory cortical receptive fields of alert monkey, J. Neurophysiol. 43:444–468.

    PubMed  CAS  Google Scholar 

  • Gilbert, C. D., 1977, Laminar differences in receptive field properties in cat primary visual cortex (area 17), J. Physiol. (London). 268:391–421.

    CAS  Google Scholar 

  • Hamori, J., Savy, C, Madarasz, M., Somogyi, J., Takacs, J., Verley, R., and Farkas-Bargeton, E., 1986, Morphological alterations in sub-cortical vibrissal relays following vibrissal follicle destruction at birth in the mouse, J. Comp. Nenrol. 254:166–183.

    CAS  Google Scholar 

  • Harris, R. M., 1986, Morphology of physiologically identified thalamocortical relay neurons in the rat ventrobasal thalamus, J. Comp. Neurol. 251:491–505.

    PubMed  CAS  Google Scholar 

  • Harris, R. M., and Woolsey, T A., 1979, Morphology of Golgi-impregnated neurons in mouse cortical barrels following vibrissae damage at different post-natal ages, Brain Res. 161:143–149.

    PubMed  CAS  Google Scholar 

  • Harris, R. M., and Woolsey, T. A., 1983, Computer-assisted analyses of barrel neuron axons and their putative synaptic contacts, J. Comp. Neurol. 220:63–79.

    PubMed  CAS  Google Scholar 

  • Hebb, D. O., 1949, The Organization of Behaviour, Wiley, New York.

    Google Scholar 

  • Hersch, S. M., and White, E. L., 1981, Thalamocortical synapses involving identified neurons in mouse primary somatosensory cortex: A terminal degeneration and Golgi/EM study, J. Comp. Neurol. 195:253–263.

    PubMed  CAS  Google Scholar 

  • Hersch, S. M., and White, E. L., 1982, A quantitative study of the thalamocortical and other synapses in layer IV of pyramidal cells projecting from mouse SmI cortex to the caudate-putamen nucleaus, J. Comp. Neurol, 211:217–225.

    PubMed  CAS  Google Scholar 

  • Hicks, T. P., and Dykes, R. W., 1983, Receptive field size for certain neurons in primary somatosensory cortex is determined by GABA-mediated intracortical inhibition, Brain Res. 274:160–164.

    PubMed  CAS  Google Scholar 

  • Hicks, T. P., and Gliedes, R. C. A., 1983, Neuropharmacological properties of electrophysiologically identified, visually responsive neurones of the posterior lateral suprasylvian area. A microion-tophoretic study, Exp. Brain Res. 49:157–173.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol, (London). 160:106–154.

    CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1963, Shape and arrangement of columns in cat’s striate cortex, J. Physiol. (London) 165: 559–568.

    CAS  Google Scholar 

  • Hubel, D. H., Wiesel, T. N., and Stryker, M. P., 1978, Anatomical demonstration of orientation columns in macaque monkey, J. Comp. Neurol, 177:361–380.

    PubMed  CAS  Google Scholar 

  • Huettner, J. E., and Baughman, R. W., 1988, The pharmacology of synapses formed by corticocollicular neurons in primary cultures of rat visual cortex, J. Neurosci. 8:160–175.

    PubMed  CAS  Google Scholar 

  • Ito, M., 1981, Some quantitative aspects of vibrissa-driven neuronal responses in rat neocortex, J. Neurophysiol, 46:705–715.

    PubMed  CAS  Google Scholar 

  • Ito, M., 1985, Processing of vibrissa sensory information within the rat neocortex, J. Neurophysiol, 54: 479–490.

    PubMed  CAS  Google Scholar 

  • Jacquin, M. F., Zahm, D. S., Henderson, T. A., Golden, J. P., Johnson, E. M., Renehan, W. E., and Klein, B. G., 1993, Structure-function relationships in rat. brainstem subnucleus interpolaris. X. Mechanisms underlying enlarged spared whisker projections after infraorbital nerve injury at birth, J. Neurosci. 13(7):2946–2964.

    PubMed  CAS  Google Scholar 

  • Jenkins, W M., Merzenich, M. M., Ochs, M. T., Allard, T., and Guic-Robles, E., 1990, Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviourally controlled tactile stimulation, J. Neurophysiol, 63:82–104.

    PubMed  CAS  Google Scholar 

  • Jensen, K. F., and Killackey, H. P., 1987, Terminal arbors of axons projecting to the somatosensory cortex of adult rats. 1. The normal morphology of specific thalamocortical afferents, J. Neurosci. 7:3529–3543.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H., 1991, Plasticity of sensory and motor maps in adult animals, Annu. Rev. Neurosci. 14:137–168.

    PubMed  CAS  Google Scholar 

  • Keller, A., White, E. L., and Cippoloni, P. B., 1985, The identification of thalamocortical axon terminals in barrels of mouse SmI cortex using immunohistochemistry of anterogradally transported lectin (Phaseolus vulgaris-leucoagglutinin), Brain Res. 51:326–331.

    Google Scholar 

  • Killackey, H. P., 1973, Anatomical evidence for cortical sub-divisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat, Brain Res. 51:326–331.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., and Leshin, S., 1975, The organization of specific thalamocortical projections to the posteromedial barrel subfields of the rat somatosensory cortex, Brain Res. 86:469–472.

    PubMed  CAS  Google Scholar 

  • Killackey, H. P., Belford, G., Ryugo, R. G., and Ryugo, D. K., 1976, Anomalous organization of thalamocortical projections consequent to vibrassae removal in newborn rat and mouse, Brain Res. 104:309–315.

    PubMed  CAS  Google Scholar 

  • Kleinschmidt, A., Bear, M. F., and Singer, W., 1987, Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten striate cortex, Science. 283:355–358.

    Google Scholar 

  • Knudsen, E. I., 1987, Neural differentiation of sound source location in the barn owl. An example of a computational map, Ann. N. Y. Acad. of Sci. 510:33–38.

    CAS  Google Scholar 

  • Koralek, K.-A., Jensen, K. F., and Killackey, H. P., 1988, Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex, Brain Res. 463:346–351.

    PubMed  CAS  Google Scholar 

  • Kossut, M., Stewart, M. G., Siucinska, E., Bourne, R. C., and Gabbot, P. L. A., 1991, Loss of gammaaminobutyric acid (GABA) immunoreactivity from mouse first somatosensory (SI) cortex following neonatal, but not adult, denervation, Brain Res. 538:165–170.

    PubMed  CAS  Google Scholar 

  • Laskin, S. E., and Spencer, W. A., 1979, Cutaneous masking. II. Geometry of excitatory and inhibitory receptive fields of single units in somatosensory cortex of the cat, J. Neurophysiol. 42:1061–1082.

    PubMed  CAS  Google Scholar 

  • Levy, W. B., and Steward, O., 1989, Synapses as associated memory elements in the hippocampal formation, Brain Res. 175:233–245.

    Google Scholar 

  • Lorente de Nö, R., 1922, La corteza cerebral del raton, Trab. Lab. Invest. Biol. (Madrid). 20:41–78.

    Google Scholar 

  • Lorente de Nö, R., 1943, Cerebral cortex: Architecture, intracortical connections, motor projections, in: Physiology of the Nervous System (J. F. Fulton, ed.), Oxford University Press, London, pp. 274–313.

    Google Scholar 

  • McCasland, J. S., and Woolsey, T. A., 1988, High resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex, J. Comp. Nenrol. 278:555–569.

    CAS  Google Scholar 

  • McCormick, D. A., Connors, B. W., Lighthall, J. W., and Prince, D. A., 1985, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, J. Neurophysiol. 54:782–806.

    PubMed  CAS  Google Scholar 

  • McKenna, T. M., Light, A. R., and Whitsel, B. L., 1984, Neurons with unusual response and receptive-field properties in upper laminae of cat SI cortex, J. Neurophysiol. 51:1055–1076.

    PubMed  CAS  Google Scholar 

  • Madison, D. V., Malenka, R. C, and Nicoll, R. A., 1991, Mechanisms underlying long-term potentiation of synaptic transmission, Annu. Rev. Neurosci. 14:379–398.

    PubMed  CAS  Google Scholar 

  • Marr, D., 1970, A theory for cerebral neocortex, Proc. R. Soc. London Ser. B. 176:161–234.

    CAS  Google Scholar 

  • Martin, K. A. C, 1984, Neuronal circuits in cat striate cortex, in: Cerebral Cortex, Vol. 2 (E. G. Jones and A. Peters, eds.) Plenum Press, New York, pp. 241–284.

    Google Scholar 

  • Mayer, M. L., Westbrook, G. L., and Guthrie, G., 1984, Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones, Nature. 309:261–263.

    PubMed  CAS  Google Scholar 

  • Mercier, B. E., Glickstein, M., and Legg, C. R., 1990, Basal ganglia and cerebellum receive different somatosensory information in rats, Proc. Natl. Acad. Sci. USA 87:4388–4392.

    PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Recanzone, G., Jenkins, W. M., Allard, T., and Nudo, R. J., 1988, Cortical representational plasticity, in: Neurobiology of Neocortex (P. Rakic and W. Singer, eds.), Wiley, New York, pp. 41–67.

    Google Scholar 

  • Miller, K. D., Chapman, B., and Stryker, M. P., 1989. Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors, Proc. Natl. Acad. Sci. USA 86:5153–5187.

    Google Scholar 

  • Miller, M. W., 1988, Development of projection and local circuit neurons in neocortex, in: Cerebral Cortex, Vol. 7 (A. Peters and E. G. Jones, eds.) Plenum Press, New York, pp. 133–175.

    Google Scholar 

  • Mitra, N. L., 1955, Quantitative analysis of cell types in mammalian neocortex, J. Ana. 189:467–483.

    Google Scholar 

  • Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of cat’s somatic sensory cortex, J.Neurophysiol. 20:408–434.

    PubMed  CAS  Google Scholar 

  • Nowak, L., Bregestovski, P., Ascher, P., Herbert, A., and Prochiantz, A., 1984, Magnesium gates glutamate-activated channels in mouse central neurones, Nature. 307:462–465.

    PubMed  CAS  Google Scholar 

  • Rakic, P., 1988, Intrinsic and extrinsic determinants of neocortical parcellation: Radial unit model, in: Neurobiology of the Neocortex (P. Rakic and W. Singer, eds.), Wiley, New York.

    Google Scholar 

  • Ribak, C. E., 1978, Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats containglutamic acid decarboxylase, J. Neurocytol. 7:461–478.

    PubMed  CAS  Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986, Learned internal representations by error propagation, in: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1 (D. E. Rumelhart, J. L. McLelland, and PDP Research Group, eds.), Bradford Books/MIT Press, Cambridge, MA, pp. 318–362.

    Google Scholar 

  • Salt, T. E., 1987, Excitatory aniino acid receptors and synaptic transmission in the rat ventrobasal thalamus, J. Physiol, (London). 391:499–510.

    CAS  Google Scholar 

  • Salt, T. E., and Eaton, S. A., 1989, Function of non-NMDA receptors and NMDA receptors in synaptic responses to natural somatosensory stimulation in the ventrobasal thalamus, Exp. Brain Res. 77:646–652.

    PubMed  CAS  Google Scholar 

  • Sato, H., Hata, Y., Hagihara, K., and Tsumoto, T., 1987, Effects of cholinergic depletion on neuron activities in the cat visual cortex, J. Neurophysiol, 58:781–794.

    PubMed  CAS  Google Scholar 

  • Shatz, C. J., and Stryker, M. P., 1978, Ocular dominance columns in layer IV of the cat’s visual cortex and the effects of monocular deprivation, J. Physiol. (London). 281:267–283.

    CAS  Google Scholar 

  • Shirokawa, T., Nishigori, A., Kimura, F., and Tsumoto, T., 1989, Actions of excitatory amino acid antagonists on synaptic potentials of layer I I/I 11 neurons of the cat’s visual cortex, Exp. Brain Res. 78:489–500.

    PubMed  CAS  Google Scholar 

  • Sholl, D. A., 1956, The Organization of the Cerebral Cortex, Methuen, London, and Wiley, New York.

    Google Scholar 

  • Sillito, A. M., 1984, Functional considerations of the operation of GABA-ergic inhibitory processes in the visual cortex, in: Cerebral Cortex, Vol. 2 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 91–117.

    Google Scholar 

  • Simons, D. J., 1978, Response properties of vibrissa units in rat SI somatosensory neocortex, J. Neurophysiol. 41:798–820.

    PubMed  CAS  Google Scholar 

  • Simons, D. J., and Carvell, G. E., 1989, Thalamocortical response transformation in the rat vibrissa/barrel system, J. Neurophysiol. 41:798–820.

    Google Scholar 

  • Simons, D. J., and Land, P. W., 1987, Early experience of tactile stimulation influences organization of somatosensory cortex, Nature. 326:694–697.

    PubMed  CAS  Google Scholar 

  • Simons, D. J., Carvell, G. E., Hcrshey, A. E., and Bryant, D. P., 1992, Responses of barrel cortex neurons in awake rats and effects of urethane anesthesia, Exp. Brain Res. 91:259–272.

    PubMed  CAS  Google Scholar 

  • Steffen, H., and Van der Loos, H., 1980, Early lesions of mouse vibrissal follicles: Their influence on dendrite orientation in the cortical barrelfield, Exp. Brain Res. 40:419–431.

    PubMed  CAS  Google Scholar 

  • Stem, G. S., 1973, A physiological mechanism for Hebb’s postulate of learning, Proc. Natl. Aead. Sci. USA. 70:997–1001.

    Google Scholar 

  • Sutor, B., and Hablitz, J.D., 1989, EPSPs in rat neocortical neurones in vitro. II. Involvement of N-methyl-D-aspartate receptors in the generation of EPSPs, J. Neurophysiol. 61:621–634.

    PubMed  CAS  Google Scholar 

  • Swadlow, H. A., 1989, Efferent neurons and suspected interneurons in S-l vibrissa cortex of the awake rabbit: Receptive fields and axonal properties, J. Neurophysiol. 59:1162–1187.

    Google Scholar 

  • Swindale, N. V., 1990, Is the cerebral cortex modular? Trends Neurosei. 13:487–492.

    CAS  Google Scholar 

  • Szentágothai, J., 1975, The “module-concept” in cerebral cortex architecture, Brain Res. 95:475–496.

    PubMed  Google Scholar 

  • Szentágothai, J., 1978a, Specificity versus (quasi-) randomness in cortical connectivity, in: Architectonics of the Cerebral Cortex, (M. A. B. Brazier and H. Petsche, eds.), Raven Press, New York, pp. 77–97.

    Google Scholar 

  • Szentagothai, J., (1978b), The neuron network of the cerebral cortex: A functional interpretation, Proc. R. Soc. London Ser. B. 201:219–248.

    CAS  Google Scholar 

  • Thomson, A. M., 1986, A magnesium-sensitive post-synaptic potential in rat cerebral cortex resembles neuronal responses to N-methylaspartate, J. Physiol. (London). 370:531–549.

    CAS  Google Scholar 

  • Thomson, A. M., West, D. C, and Lodge, D., 1985, An N-methyl-D-aspartate receptor mediated synapse in rat cerebral cortex: A site of action of ketamine? Nature. 313:479–481.

    PubMed  CAS  Google Scholar 

  • Towe, A. L., 1975, Notes on the hypothesis of columnar organization in somatosensory cortex, Brain Behav. Evol. 11:16–47.

    PubMed  CAS  Google Scholar 

  • Tsumoto, T, Haghihara, H., Sato, H., and Hata, Y, 1987, NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats, Nature. 327:513–514.

    PubMed  CAS  Google Scholar 

  • Valverde, F., 1986, Intrinsic neocortical organization: Some comparative aspects, Neuroscience. 18:1–23.

    PubMed  CAS  Google Scholar 

  • Van der Loos, H., and Dörfl, J., 1978, Does the skin tell the somatosensory cortex how to construct a map of the periphery? Neurosei. Lett. 7:23–30.

    Google Scholar 

  • Von der Malsberg, C., 1987, Synaptic plasticity as a basis of brain organization, in: The Neural and Molecular Bases of Learning (J.-P. Changeux and M. Knoishi, eds.), Wiley, New York, pp. 411–432.

    Google Scholar 

  • Waite, P. M. E., and Taylor, P. K., 1978, Removal of whiskers in young rats causes functional changes in cerebral cortex, Nature. 274:600–602.

    PubMed  CAS  Google Scholar 

  • Wall, J. T., 1988, Variable organization in cortical maps of the skin as an indication of the lifelong adaptive capacities of circuits in the mammalian brain, Trends Neurosei. 11:549–557.

    CAS  Google Scholar 

  • Welker, C., 1971, Microelectrode delineation of fine grain somatotopic organization of SmI cerebral neocortex in albino rat, Brain Res. 25:259–275.

    Google Scholar 

  • Welker, E., Soriano, E., and Van der Loos, H., 1989, Plasticity in the barrel cortex of adult mouse: Effects of peripheral deprivation on GAD-immunoreactivity, Exp. Brain Res. 74:412–452.

    Google Scholar 

  • Welker, E., Armstrong-James, M., and Van der Loos, H., 1993, The mode of activation of a barrel column: Response properties of single units in the somatosensory cortex of the mouse to whisker deflection, Eur. J. Neurosa. 5:691–712.

    CAS  Google Scholar 

  • White, E. L., 1979, Thalamocortical synaptic relations. A review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex, Brain Res. Rev. 1:275–311.

    Google Scholar 

  • Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex: The description of a cortical field composed of discrete cytoarchitectonic units, Brain Res. 17:205–242.

    PubMed  CAS  Google Scholar 

  • Woolsey, T. A., Dierker, M. L., and Wann, D. F., 1975, Mouse SmI cortex: Qualitative and quantitative classification of Golgi-impregnated barrel neurons, Proc. Natl. Acad. Sci. USA. 72:2165–2169.

    PubMed  CAS  Google Scholar 

  • Zipser, D., and Anderson, R. A., 1988, A back propagation programmed network that simulates response properties of a subset of posterior parietal neurons, Nature. 331:679–684.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Armstrong-James, M. (1995). The Nature and Plasticity of Sensory Processing within Adult Rat Barrel Cortex. In: Jones, E.G., Diamond, I.T. (eds) The Barrel Cortex of Rodents. Cerebral Cortex, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9616-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9616-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9618-6

  • Online ISBN: 978-1-4757-9616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics