Skip to main content

Circadian Rhythmicity

Regulation in the Time Domain

  • Chapter
Biological Regulation and Development

Abstract

The control of rate and of temporal sequence is a major aspect of biological regulation. Inferences about causality are often made on the basis of experimentally determined temporal sequence with the unstated assumption that the underlying temporal processes are linear. Because many biological processes oscillate (especially those with feedback regulation), the assumption of linearity is likely to be false, and the causal connections based on it will often be wrong. When the underlying temporal organization is oscillatory, then processes can appear to occur after the events that they cause. In cases that involve synchronization of oscillations, the regulatory cycle often “phase lags” the oscillation that it controls (Pittendrigh, 1981b). This example is meant only to illustrate the importance of understanding temporal frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andresen, M. C., and Brown, A. M., 1979, Photoresponses of a sensitive extraretinal photoreceptor in Aplysia, J. Physiol 287: 267.

    PubMed  CAS  Google Scholar 

  • Aschoff, J., 1981, Handbook of Behavioral Neurobiology. Biological Rhythms, Vol. 4, Plenum Press, New York.

    Book  Google Scholar 

  • Aschoff, J., and Weyer, R., 1976, Human circadian rhythms: A multioscillatory system, Fed. Proc 35: 23–26.

    Google Scholar 

  • Baylor, D. A., and Hodgkin, A. L., 1973, Detection and resolution of visual stimuli by turtle photoreceptor, J. Physiol 234: 163.

    PubMed  CAS  Google Scholar 

  • Benson, J. A., and Jacklet, J. W., 1977, Circadian rhythm of output from neurons in the eye of Aplysia. I. Effect of deuterium oxide and temperature, J. Exp. Biol 70: 151.

    CAS  Google Scholar 

  • Binkley, S., and Geller, E. B., 1975, Pineal N-acetyltransferase in chickens: Rhythm persists in constant darkness, J. Comp. Physiol 99: 67.

    Article  CAS  Google Scholar 

  • Binkley, S. A., Riebman, J. B., and Reilly, K. B., 1978, The pineal gland: A biological clock in vitro, Science 202: 1198.

    Article  PubMed  CAS  Google Scholar 

  • Block, G. D., and McMahon, D. G., 1983, Localized illumination of the Aplysia and Bulla eye reveals new relationships between retinal layers, Brain Res. 265: 134.

    Article  PubMed  CAS  Google Scholar 

  • Block, G. D., and Page, T. L., 1978, Circadian pacemakers in the nervous system, Annu. Rev. Neurosci 1: 19.

    Article  PubMed  CAS  Google Scholar 

  • Block, G. D., and Roberts, M. H., 1981, Circadian pacemaker in the Bursatella eye: Properties of the rhythm and its effects on locomotor behavior, J. Comp. Physiol 142: 403.

    Article  Google Scholar 

  • Block, G. D., and Wallace, S. F., 1982, Localization of a circadian pacemaker in the eye of a mollusk, Bulla, Science 217: 155.

    Google Scholar 

  • Cicerone, C. M., Green, D. G., and Fisher, L. J., 1979, Cone input to ganglion cells in hereditary retinal degeneration, Science 203: 11–13.

    Article  Google Scholar 

  • Corrent, G., McAdoo, D. J., and Eskin, A., 1978, Serotonin shifts the phase of the circadian rhythm from the Aplysia eye, Science 202: 977.

    Article  PubMed  CAS  Google Scholar 

  • Corrent, G., Eskin, A., and Kay, I., 1982, Entrainment of the circadian rhythm from the eye of Aplysia: Role of serotonin, Am. J. Physiol 242: R326.

    PubMed  CAS  Google Scholar 

  • Deguchi, T., 1979a, Circadian rhythm of serotonin N-acetyltransferase activity in organ culture of chicken pineal gland, Science 203: 12–45.

    Article  Google Scholar 

  • Deguchi, T., 1979b, A circadian oscillator in cultured cells of chicken pineal gland, Nature 282: 94.

    Article  PubMed  CAS  Google Scholar 

  • Deguchi, T., 1979c, Role of adenosine 3’, 5’-monophosphate in the regulation of circadian oscillation of serotonin N-acetyltransferase activity in cultured chicken pineal glands, J. Neurochem 33: 45.

    Article  PubMed  CAS  Google Scholar 

  • Deguchi, T., 1981, Rhodopsin-like photosensitivity of isolated chicken pineal gland, Nature 290: 706.

    Article  PubMed  CAS  Google Scholar 

  • Dodt, E., and Heerd, E., 1962, Mode of action of pineal nerve fibers in frogs, J. Neurophysiol 25: 405.

    PubMed  CAS  Google Scholar 

  • Elliott, J. A., 1976, Circadian rhythms and photoperiodic time measurement in mammals, Fed. Proc 25: 23–39.

    Google Scholar 

  • Eskin, A., 1971, Properties of the Aplysia visual system: In vitro entrainment of the circadian rhythm and centrifugal regulation of the eye, Z. Vgl. Physiol. 74: 353.

    Google Scholar 

  • Eskin, A., 1977, Neurophysiological mechanisms involved in photoentrainment of the circadian rhythm from the Aplysia eye, J. Neurobiol. 8: 273.

    Article  PubMed  CAS  Google Scholar 

  • Eskin, A., 1979a, Identification and physiology of circadian pacemakers, Fed. Proc 38: 2570.

    PubMed  CAS  Google Scholar 

  • Eskin, A., 1979b, Circadian system of the Aplysia eye: Properties of the pacemaker and mechanisms of its entrainment, Fed. Proc. 38: 25–73.

    Google Scholar 

  • Eskin, A., 1982, A protein synthesis inhibitor blocks the effect of serotonin and 8-benzylthio cAMP on the Aplysia eye circadian rhythm, Soc. Neurosci. Abstr. 8: 547.

    Google Scholar 

  • Eskin, A., and Harcombe, E., 1977, Eye of Navanax: Optic activity, circadian rhythm and morphology, Comp. Biochem. Physiol. 57A: 443.

    Google Scholar 

  • Eskin, A., and Takahashi, J. S., 1983, Adenylate cyclase activation shifts the phase of a circadian pacemaker, Science 220: 82.

    Article  PubMed  CAS  Google Scholar 

  • Eskin, A., Corrent, G., Lin, C. Y., and McAdoo, P. J., 1982, Mechanism for shifting the phase of a circadian rhythm by serotonin: Involvement of cAMP, Proc. Natl. Acad. Sci. U.S.A 79: 660.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, J. F., 1982, Genetic approaches to circadian clocks, Am. Rev. Plant Physiol 33: 583.

    Article  CAS  Google Scholar 

  • Follett, B. K., and Follett, D. E. (eds), 1981, Biological Clocks in Seasonal Reproductive Cycles, John Wright and Sons, Bristol, United Kingdom.

    Google Scholar 

  • Gaston, S., and Menaker, M., 1968, Pineal function: The biological clock in the sparrow? Science 160: 11–25.

    Article  Google Scholar 

  • Green, D. J., and Gillette, R., 1982, Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice, Brain Res. 245: 198.

    Article  PubMed  CAS  Google Scholar 

  • Groos, G. A., and Mason, R., 1980, The visual properties of rat and cat suprachiamatic neurones, J. Comp. Physiol. 135: 349.

    Google Scholar 

  • Handler, A. M., and Konopka, R. J., 1979, Transplantation of a circadian pacemaker in Drosophila, Nature 279: 236.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, K., 1971, Splitting of the circadian rhythm as a function of light intensity, in: Biochronometry ( M. Menaker, ed.), pp. 134–150, National Academy of Science, Washington, D.C.

    Google Scholar 

  • Hudson, D. J., and Lickey, M., 1980, Internal desynchronization between the identified circadian oscillators in Aplysia, Brain Res. 183: 481.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, S. T., and Kawamura, H., 1979, Persistance of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus, Proc. Natl. Acad. Sci. U.S.A 76: 59–62.

    Google Scholar 

  • Inouye, S. T., and Kawamura, H., 1982, Characteristics of a circadian pacemaker in the suprachiasmatic nucleus, J. Comp. Physiol 146: 153.

    Article  Google Scholar 

  • Jacklet, J. W., 1969, Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia, Science 164: 562.

    Article  PubMed  CAS  Google Scholar 

  • Jacklet, J. W., 1974, The effects of constant light and light pulses on the circadian rhythm in the eye of Aplysia, J. Comp. Physiol. 90: 33.

    Google Scholar 

  • Jacklet, J. W., 1977, Neuronal circadian rhythms: Phase shifting by a protein synthesis inhibitor, Science 198: 69.

    Google Scholar 

  • Jacklet, J. W., 1981, Circadian timing by endogenous oscillators in the nervous system: Toward cellular mechanisms: Biol. Bull. 160: 199.

    Article  CAS  Google Scholar 

  • Kasai, C., Menaker, M., and Perez-Polo, R., 1979, Circadian clock in culture: N-acetyltransferase activity of chick pineal glands oscillates in vitro, Science 203: 656.

    Article  Google Scholar 

  • Koehler, W. K., and Fleissner, G., 1978, Internal desynchronization of bilaterally organized circadian oscillators in the visual system of insects, Nature 274: 708.

    Article  PubMed  CAS  Google Scholar 

  • LaVail, M. M., Sidman, M., Raysin, R., and Sidman, R. L., 1974, Discrimination of light intensity by rats with inherited retinal degeneration: A behavioral and cytological study, Vision Res. 14: 693.

    Article  PubMed  CAS  Google Scholar 

  • McMillan, J. P., Elliott, J. A., and Menaker, M., 1975, On the role of eyes and brain photoreceptors in the sparrow: Arrhythmicity in constant light, J. Comp. Physiol 102: 263.

    Article  Google Scholar 

  • McMurray, L., and Hastings, J. W., 1972, No desynchronization among four circadian rhythms in the unicellular alga, Conyaulaz polyedra, Science 175: 11–37.

    Google Scholar 

  • Menaker, M., 1968, Extraretinal light perception in the sparrow. I: Entrainment of the biological clock, Proc. Natl. Acad. Sci. U.S.A 59: 414.

    Article  PubMed  CAS  Google Scholar 

  • Menaker, M., 1982, The search for principles of physiological organization in vertebrate circadian systems, in: Vertebrate Circadian Systems (J. Aschoff, S. Daan and G. A. Gross, eds.), pp. 1–12, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Menaker, M., and Underwood, H., 1976, Extraretinal photoreception in birds, Photochem. Photobiol. 23:299.

    Article  Google Scholar 

  • Moore, R. Y., 1978, Central neural control of circadian rhythms, in: Frontiers in Neuroendocrinology, Vol. 5 ( W. F. Ganong and L. Martini, eds.), pp. 185–206, Raven Press, New York.

    Google Scholar 

  • Moore-Ede, M. C., Sulzman, F. M., and Fuller, C. A., 1982, The Clocks That Time Us, Harvard University Press, Cambridge.

    Google Scholar 

  • Mote, M. I., and Black, K. R., 1981, Action spectrum and threshold sensitivity of entrainment of circadian running activity in the cockroach, Periplaneta Americana. Photochem. Photobiol 34: 257.

    Google Scholar 

  • Munz, F. W., and McFarland, W. N., 1977, Evolutionary adaptations of fishes to the photic environment, in: Handbook of Sensory Physiology. The Visual System in Vertebrates, Vol. VII/5 ( F. Crescitelli, ed.), pp. 193–274, Springer-Verlag, Berlin.

    Google Scholar 

  • Nelson, R., and Zucker, I., 1981, Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight, Comp. Biochem. Physiol 69A: 145.

    Article  Google Scholar 

  • Page, T. L., 1981a, Localization of circadian pacemakers in insects, in: Biological Clocks in Seasonal Reproductive Cycles ( B. K. Follett and D. E. Follett, eds.), pp. 113–124, John Wright and Sons, Bristol, United Kingdom.

    Google Scholar 

  • Page, T. L., 1981b, Effects of low temperature pulses on the circadian rhythm of locomotor activity in the cockroach, Am. J. Physiol 240: R144.

    PubMed  CAS  Google Scholar 

  • Page, T. L., 1982a, Transplantation of the cockroach circadian pacemaker, Science 216: 73.

    Article  PubMed  CAS  Google Scholar 

  • Page, T. L., 19826, Extraretinal photoreception in entrainment and photoperiodism in invertebrates, Experientia 38: 100.

    Google Scholar 

  • Page, T. L., Caldarola, P. C., and Pittendrigh, C. S., 1977, Mutual entrainment of bilaterally distributed circadian pacemakers, Proc. Natl. Acad. Sci. U.S.A 74: 12–77.

    Article  Google Scholar 

  • Pickard, G. E., Turek, F. W. Lamperti, A. A., and Silverman, A. J., 1982, The effect of neonatally administered monosodium glutamute (MSG) on the development of retinofugal projections and the entrainment of circadian locomotor activity, Behay. Neural. Biol 34: 433.

    CAS  Google Scholar 

  • Pittendrigh, C. S., 1974, Circadian oscillations in cells and the circadian organization of multicellular systems, in: The Neurosciences Third Study Program ( F. O. Schmitt and F. G. Worden, eds.), pp. 437–458, MIT Press, Cambridge.

    Google Scholar 

  • Pittendrigh, C. S., 1981a, Circadian systems: General perspective, in: Handbook of Behavioral Neurobiology. Biological Rhythms, Vol. 4 ( J. Aschoff, ed.), pp. 57–80, Plenum Press, New York.

    Google Scholar 

  • Pittendrigh, C. S., 1981b, Circadian systems: Entrainment, in: Handbook of Behavioral Neurobiology, Biological Rhythms, Vol. 4 ( J. Aschoff, ed.), pp. 95–124, Plenum Press, New York.

    Google Scholar 

  • Pittendrigh, C. S., 1981e, Circadian organization and the photoperiodic phenomena, in: Biological Clock in Seasonal Reproductive Cycles ( B. K. Follett and D. E. Follett, eds.), pp. 1–35, John Wright and Sons, Bristol, United Kingdom.

    Google Scholar 

  • Pittendrigh, C. S., and Daan, S., 1976, A functional analysis of circadian pacemakers in nocturnal rodents, V. Pacemaker structure: A clock for all seasons, J. Comp. Physiol 106: 333.

    Article  Google Scholar 

  • Ripps, H., and Weale, R. A., 1976, The visual stimulus, in: The Eye, Vol. 2A ( H. Dayson, ed.), pp. 43–99, Academic Press, New York.

    Google Scholar 

  • Rothman, S., and Strumwasserr, F., 1976, Phase shifting the circadian rhythm of neuronal activity in the isolated Aplysia eye with puromycin and cycloheximide: Electrophysiological and biochemical studies, J. Gen. Physiol 68: 359.

    Article  PubMed  CAS  Google Scholar 

  • Rusak, B., and Boulos, Z., 1981, Pathways for photic entrainment of mammaliam circadian rhythms, Photochem. Photobiol 34: 267.

    PubMed  CAS  Google Scholar 

  • Rusak, B., and Zucker, I., 1979, Neural regulation of circadian rhythms, Physiol. Rev 59: 449.

    PubMed  CAS  Google Scholar 

  • Simpson, S. M., and Follett, B. K., 1981, Pineal and hypothalamic pacemakers: Their role in regulating circadian rhythmicity in Japanese quail, J. Comb. Physiol 144: 381.

    Article  Google Scholar 

  • Strumwasser, F., Alvarez, R. B., Viele, D. P., and Woolum, J. C., 1979, Structure and function of a neuronal circadian oscillator system, in: Biological Rhythms and their Central Mechanism ( M. Suda, D. Hayaishi and H. Nakagawa, eds.), pp. 41–56, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Tabata, M., Tamura, T., and Niwa, H., 1975, Origin of the slow potential in the pineal organ of the rainbow trout, Vision Res. 15: 737.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, J. S., 1981, Neural and endocrine regulation of avian circadian systems, Ph.D. dissertation, Department of Biology and Institute of Neuroscience, University of Oregon, Eugene.

    Google Scholar 

  • Takahashi, J. S., and Menaker, M., 1979, Physiology of avian circadian pacemakers, Fed. Proc 38: 25–83.

    Google Scholar 

  • Takahashi, J. S., and Menaker, M., 1982a, Entrainment of the circadian system of the house sparrow: A population of oscillators in pinealectomized birds, J. Comp. Physiol 146: 245.

    Article  Google Scholar 

  • Takahashi, J. S., and Menaker, M., 1982b, Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus, J. Neuroscience 2: 815.

    CAS  Google Scholar 

  • Takahashi, J. S., and Zatz, M., 1982a, Regulation of circadian rhythmicity, Science 217: 1104.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, J. S., and Zatz, M., 1982b, Photic regulation of cyclic nucleotide levels and N-acetyltransferase activity in the cultured avian pineal, Soc. Neurosci. Abst 8: 546.

    Google Scholar 

  • Takahashi, J. S., Hamm, H., and Menaker, M., 1980, Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro, Proc. Natl. Acad. Sci. U.S.A 77: 2319.

    Article  PubMed  CAS  Google Scholar 

  • Truman, J. W., 1972, Physiology of insect rhythms. II. The silkmoth brain as the location of the biological clock controlling eclosion. J. Comp. Physiol 81: 99.

    Article  Google Scholar 

  • Truman, J. W., 1976, Extraretinal photoreception in insects, Photochem. Photobiol 23: 215.

    Article  CAS  Google Scholar 

  • Turek, F. W., McMillan, J. P., and Menaker, M., 1976, Melatonin: Effects on the circadian locomotor rhythm of sparrows, Science 194: 1441.

    Article  PubMed  CAS  Google Scholar 

  • Underwood, H., 1977, Circadian organization in lizards: The role of the pineal organ, Science 195:587.

    Article  PubMed  CAS  Google Scholar 

  • Underwood, H., and Groos, G., 1982, Vertebrate circadian rhythms: Retinal and extraretinal photoreception, Experientia 28: 1013.

    Article  Google Scholar 

  • Underwood, H., and Menaker, M., 1976, Extraretinal photoreception in lizards, Photochem. Photobiol. 23:227.

    Article  CAS  Google Scholar 

  • Wainwright, S. D., 1980, Diurnal cycles in serotonin acetyltransferase activity and cyclic GMP content of cultured pineal glands, Nature 285: 478.

    Article  PubMed  CAS  Google Scholar 

  • Wainwright, S. D., and Wainwright, L. K., 1979, Chick pineal serotonin acetyltransferase: A diurnal cycle maintained in vitro and its regulation by light, Can. J. Biochem 57: 700.

    Article  PubMed  CAS  Google Scholar 

  • Wald, G., Brown, P. K., and Gibbons, I. R., 1963, The problem of visual excitation, J. Opt. Soc. Am 53: 20.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, N. H., and Menaker, M., 1975, Neural connections of sparrow pineal: Role in circadian control of activity, Science 190: 477.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, N. H., and Menaker, M., 1979, The pineal: A pacemaker within the circadian system of the house sparrow, Proc. Natl. Acad. Sci. U.S.A 76: 999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takahashi, J.S., Menaker, M. (1984). Circadian Rhythmicity. In: Goldberger, R.F., Yamamoto, K.R. (eds) Biological Regulation and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4619-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4619-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4621-1

  • Online ISBN: 978-1-4757-4619-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics