Skip to main content

Approximations and complex multiplication according to Ramanujan

  • Chapter
Pi: A Source Book

Abstract

This talk revolves around two focuses: complex multiplications (for elliptic curves and Abelian varieties) in connection with algebraic period relations, and (diophantine) approximations to numbers related to these periods. Our starting point is Ramanujan’s works [1], [2] on approximations to π via the theory of modular and hypergeometric functions. We describe in chapter 1 Ramanujan’s original quadratic period-quasiperiod relations for elliptic curves with complex multiplication and their applications to representations of fractions of „ and other logarithms in terms of rapidly convergent nearly integral (hypergeometric) series. These representations serve as a basis of our investigation of diophantine approximations to π and other related numbers. In Chapter 2 we look at period relations for arbitrary CM-varieties following Shimura and Deligne. Our main interest lies with modular (Shimura) curves arising from arithmetic Fuchsian groups acting on H. From these we choose arithmetic triangular groups, where period relations can be expressed in the form of hyper-geometric function identities. Particular attention is devoted to two (commensurable) triangle groups, (0,3;2,6,6) and (0,3;2,4,6), arising from the quaternion algebra over Φ with the discriminant D = 2.3.

This work was supported in part by the N.S.F., U.S. Air Force and O.C.R.E.A.E. program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ramanujan, Collected Papers, Cambridge, 1927, 23–39.

    Google Scholar 

  2. G.H. Hardy, Ramanujan, Cambridge, 1940.

    Google Scholar 

  3. G.N. Watson, Some singular moduli (I);(II);(III); (IV); Quart. J. Math. Oxford, 3 (1932), 81–98; 189–212; Proc. London Math. Soc. 40 (1936), 83–142; Acta Arithmetica, 1 (1936), 284–323.

    Google Scholar 

  4. J.M. Borwein, P.B. Borwein, Pi and the AGM, Wiley, 1987.

    Google Scholar 

  5. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4 ed., Cambridge, 1927.

    Google Scholar 

  6. A. Weil, Elliptic Functions According to Eisenstein and Kronecker, Springer, 1976.

    Google Scholar 

  7. C.L. Siegel, Bestimmung der elliptischen Modulfunktionen durch eine Transformations gleichung, Abh. Math. Sem. Univ. Hamburg, 27 (1964), 32–38.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Weil, Sur les périodes des Intégrales Abéliennes, Comm. Pure Appl. Math., 29 (1976), 813–819.

    MathSciNet  MATH  Google Scholar 

  9. D. Masser, Elliptic Functions and Transcendence, Lecture Notes Math., v. 437, Springer, 1975.

    Google Scholar 

  10. S. Lefschetz, On certain numerical invariants of algebraic varieties with application to Abelian varieties, Trans. Amer. Math. Soc., 22 (1921), 327–482.

    Article  MathSciNet  MATH  Google Scholar 

  11. E.T. Whittaker, On hyperlemniscate functions, a family of automorphic functions, J. London Math. Soc., 4 (1929), 274–278.

    Article  MathSciNet  MATH  Google Scholar 

  12. D.V. Chudnovsky, G.V. Chudnovsky, Computer assisted number theory, Lecture Notes Math., Springer, 1240, 1987, 1–68.

    MathSciNet  Google Scholar 

  13. Ch. Hermite, Sur la Théorie des Equations Modulaires, C.R. Acad. Sci. Paris., 48 (1859), 940–1079–1097; 49 (1859), 16–110–141.

    Google Scholar 

  14. H.M. Stark, Class-numbers of complex quadratic fields, Lecture Notes Math., Springer, v. 320, 1973, 153–174.

    Google Scholar 

  15. D. Shanks, Dihedral quartic approximation and series for n, J. Number Theory, 14 (1982), 397–423.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Fricke, Die Elliptischen Funktionen und ihre Anwendungen, v. 1, Teubner, 1916.

    Google Scholar 

  17. A. Baker, Transcendental Number Theory, Cambridge, 1979.

    Google Scholar 

  18. H.M. Stark, A transcendence theorem for class number problems, I; II; Ann. Math. 94 (1971), 153–173; 96 (1972), 174–209.

    Article  Google Scholar 

  19. C.L. Siegel, Zum Beweise des Starkschen Satzes, Invent. Math., 5 (1968), 180–191.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Shimura, Automorphic forms and the periods of Abelian varieties, J. Math. Soc. Japan, 31 (1979), 561–59.

    MATH  Google Scholar 

  21. G. Shimura, The arithmetic of certain zeta functions and automorphic forms on orthogonal groups, Ann. of Math., 111 (1980), 313–375.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Deligne, Valeurs de fonctions L et périodes d’integrales, Proc. Symp. Pure Math., v. 33, Part 2, Amer. Math. Soc., Providence, R.I., 313–346.

    Google Scholar 

  23. P. Deligne, Cycles de Hodge absolus et périodes des intégrales des variétés abéliennes, Soc. Math. de France, Memoire, N 2, 1980, 23–33.

    MathSciNet  MATH  Google Scholar 

  24. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Forms, Princeton, University Press, 1971.

    Google Scholar 

  25. G. Shimura, Y. Taniyama, Complex Multiplication of Abelian Varieties and Its Applications to Number Theory, Publications of the, Mathematical Society of Japan, N°6, 1961.

    Google Scholar 

  26. G.V. Chudnovsky, Algebraic independence of values of exponential and elliptic functions. Proceedings of the International Congress of Mathematicians, Helsinki, 1979, Acad. Sci. Tennice, Helsinki, 1980, v. 1, 339–350.

    Google Scholar 

  27. B.H. Gross, N. Koblitz, Gauss sums and the p-adic r-function, Ann. of Math., 109 (1979), 569–581.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Fricke, F. Klein, Vorlesungen über die Theorie der Automorphen Functionen, bd. 2, Tenbner, 1926.

    Google Scholar 

  29. R. Morris, On the automorphic functions of the group (0,3;/1,t2,i3), Trans. Amer. Math. Soc., 7 (1906), 425–448.

    MathSciNet  MATH  Google Scholar 

  30. K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan, 29 (1977), 91–106.

    Article  MathSciNet  Google Scholar 

  31. H.P.F. Swinnerton-Dyer, Arithmetic groups in Discrete Groups and Automorphic Functions, Academic Press, 1977, 377–401.

    Google Scholar 

  32. J.I. Hutchinson, On the automorphic functions of the group (0,3;2,6,6), Trans. Amer. Math. Soc., 5 (1904), 447–460.

    MathSciNet  MATH  Google Scholar 

  33. D.V. Chudnovsky, G.V. Chudnovsky, Note on Eisenstein’s system of differential equations, in Classical and Quantum Models and Arithmetic Problems, M. Dekker, 1984, 99–116.

    Google Scholar 

  34. D.V. Chudnovsky, G.V. Chudnovsky, The use of computer algebra for diophantine and differential equations, in Computer Algebra as a Tool for Research in Mathematics and Physics, Proceeding of the International Conference, 1984, New York University, M. Dekker, 1987.

    Google Scholar 

  35. D.V. Chudnovsky, G.V. Chudnovsky, Applications of Padé approximations to diophantine inequalities in values of G-functions, Lecture Notes Math., v. 1135, Springer, 1985, 9–50.

    Google Scholar 

  36. K. Mahler, Perfect systems, Compositio Math., 19 (1968), 95–166.

    MathSciNet  MATH  Google Scholar 

  37. D.V. Chudnovsky, G.V. Chudnovsky, Applications of Padé approximations to the Grothendieck conjecture on linear differential equations, Lecture Notes Math., v. 1135, Springer, 1985, 51–100.

    Google Scholar 

  38. ]C.L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys. Math. Kl. 1, 1929.

    Google Scholar 

  39. G.V. Chudnovsky, Contributions to the Theory of Transcendental Numbers, Mathematical Surveys and Monographs, v. 19, Amer. Math. Soc., Providence, R.I., 1984.

    Google Scholar 

  40. G.V. Chudnovsky, Padé approximation and the Riemann monodromy problem, in Bifurcation Phenomena in Mathematical Physics and Related Topics, D. Reidel, Boston, 1980, 448–510.

    Google Scholar 

  41. G.V. Chudnovsky, Rational and padé approximation to solutions of linear differential equations and the monodromy theory. Lecture Notes Physics, v. 126, Springer, 1980, 136–169.

    Google Scholar 

  42. G.V. Chudnovsky, Pad approximations to the generalized hypergeometric functions. I., J. Math. Pures et Appliques, Paris, 58 (1979), 445–476.

    MathSciNet  MATH  Google Scholar 

  43. G.V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math., 117 (1983), 325–382.

    Article  MathSciNet  MATH  Google Scholar 

  44. C.L. Siegel, Transcendental. Numbers, Princeton University Press, 1949.

    Google Scholar 

  45. G.V. Chudnovsky, Rational approximations to linear forms of exponentials and binomials, Proc. Nat’l Acad. Sci. U.S.A., 80 (1983), 3138–3141.

    Article  MathSciNet  MATH  Google Scholar 

  46. D.V. Chudnovsky, G.V. Chudnovsky, A random walk in higher arithmetic, Adv. Appl. Math., 7 (1986), 101–122.

    MathSciNet  MATH  Google Scholar 

  47. H. Poincare, Sur les groupes des équations lineaires, Acta. Math., 4 (1884) 201–312.

    Article  MathSciNet  Google Scholar 

  48. D.A. Hejhel, Monodromy groups and Poincaré series, Bull. Amer. Math. Soc., 84 (1978), 339–376.

    Google Scholar 

  49. E.T. Whittaker, On the connexion of algebraic functions with automorphic functions, phil. Trans., 122 A(1898), 1–32.

    Google Scholar 

  50. R.A. Rankin, The differential equations associated with the uniformization of certain algebraic curves, proc. Roy. Soc. Edinburgh, 65 (1958) 35–62.

    MathSciNet  MATH  Google Scholar 

  51. A. Schonhage, V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing, 7 (1971), 281–292.

    Article  MathSciNet  Google Scholar 

  52. D.V. Chudnovsky, G.V. Chudnovsky, Algebraic complexities and algebraic curves over finite fields, proc. Natl. Acad. Sci. USA, 84 (1987), 1739–1743.

    Article  MATH  Google Scholar 

  53. A. Schonhage, Equation solving in terms of computational complexity, proc. International Congress of Mathematicians, Berkeley, 1986.

    Google Scholar 

  54. R.P. Brent, Multiple-precision zero-finding methods and the complexity of elementary function evaluation, in Analytic Computational Complexity, J.F. Traub, Ed., Academic Press, 1975, 151–176.

    Google Scholar 

  55. R.P. Brent, The complexity of multiple-precision arithmetic, in Complexity of Computational Problem Solving, R.S. Anderson and R.P. Brent, Eds. Univ. of Queensland Press, Brisbane, Australia, 1975, 126–165.

    Google Scholar 

  56. D.V. Chudnovsky, G.V. Chudnovsky, On expansions of algebraic functions in power and Puiseux series, I; II; J. of Complexity, 2 (1986), 271–294; 3 (1987), 1–25.

    Article  Google Scholar 

  57. O. Perron, Die Lehre von den Kettenbrüchen, Teubner, 1929.

    Google Scholar 

  58. D. Bini, V. Pan, Polynomial division and its computational complexity, J. of Complexity, 2 (1986), 179–203.

    Article  MathSciNet  MATH  Google Scholar 

  59. D. A. Hejhal, A classical approach to a well-known spectral correspondence on quaternion groups, Lecture Notes Math., v. 1135, Springer, 1985, 127–196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chudnovsky, D.V., Chudnovsky, G.V. (1988). Approximations and complex multiplication according to Ramanujan. In: Pi: A Source Book. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2736-4_63

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2736-4_63

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2738-8

  • Online ISBN: 978-1-4757-2736-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics