Overview
- Authors:
-
-
Aad W. Vaart
-
Department of Mathematics and Computer Science, Free University, Amsterdam, The Netherlands
-
Jon A. Wellner
-
Statistics, University of Washington, Seattle, USA
Access this book
Other ways to access
About this book
This book tries to do three things. The first goal is to give an exposition of certain modes of stochastic convergence, in particular convergence in distribution. The classical theory of this subject was developed mostly in the 1950s and is well summarized in Billingsley (1968). During the last 15 years, the need for a more general theory allowing random elements that are not Borel measurable has become well established, particularly in developing the theory of empirical processes. Part 1 of the book, Stochastic Convergence, gives an exposition of such a theory following the ideas of J. Hoffmann-J!1Jrgensen and R. M. Dudley. A second goal is to use the weak convergence theory background devel oped in Part 1 to present an account of major components of the modern theory of empirical processes indexed by classes of sets and functions. The weak convergence theory developed in Part 1 is important for this, simply because the empirical processes studied in Part 2, Empirical Processes, arenaturally viewed as taking values in nonseparable Banach spaces, even in the most elementary cases, and are typically not Borel measurable. Much of the theory presented in Part 2 has previously been scattered in the journal literature and has, as a result, been accessible only to a relatively small number of specialists. In view of the importance of this theory for statis tics, we hope that the presentation given here will make this theory more accessible to statisticians as well as to probabilists interested in statistical applications.
Similar content being viewed by others
Table of contents (37 chapters)
-
-
Stochastic Convergence
-
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 2-5
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 6-15
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 16-28
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 29-33
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 34-42
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 43-44
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 45-48
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 49-51
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 52-56
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 57-66
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 67-70
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 71-74
-
Empirical Processes
-
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 80-94
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 95-106
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 107-121
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 122-126
-
- Aad W. van der Vaart, Jon A. Wellner
Pages 127-133
Reviews
"...succeeds and complements Billingsleys classic work and will become the standard source of study and reference for students and researchers...." The Statistician
Authors and Affiliations
-
Department of Mathematics and Computer Science, Free University, Amsterdam, The Netherlands
Aad W. Vaart
-
Statistics, University of Washington, Seattle, USA
Jon A. Wellner