Skip to main content

Structural Organisation and Stability of Central Nervous System Myelin

  • Chapter
A Multidisciplinary Approach to Myelin Diseases

Part of the book series: NATO ASI Series ((NSSA,volume 142))

Abstract

Studies aimed at elucidating the structural organisation of the myelin sheath in the central and peripheral nervous systems have been steadily progressing for many years and were initiated using physicochemical techniques, primarly X-ray diffraction and electron microscopy (Finean, 1961). Because of its multilamellar structure the myelin sheath is highly amenable to analysis by X-ray techniques and many of the earlier studies were undertaken on myelin to glean information about the structure of biological membranes in general. We know now that myelin, with its very high lipid to protein ratio (Table 1), is at one end of a wide spectrum of biological membranes all of which appear to have a common structural organisation of complex lipids in a stable bilayer form in fluid-mosaic arrangement with proteins (Singer & Nicholson, 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banik, N. L., Gohil, K., and Davison, A. N., 1976, The action of snake venom, phospholipase A and trypsin on purified myelin in vitro, Biochem. J., 159: 273.

    Google Scholar 

  • Banik, N. L., McAlhaney, W. W., and Hogan, E. L. 1985, Calcium-stimulated proteolysis in myelin: evidence for a Ca2+ — activated neutral proteinase associated with purified myelin of rat CNS, J. Neurochem., 45: 581.

    Article  Google Scholar 

  • Beneveniste, E. N., Merril, J. E., Kaufman, S. E., Golde, D. W., and Gasson, J. C., 1985, Purification and characterization of a human T-lymphocyte-derived glial growth-promoting factor, Proc. Natl. Sci., 82: 3930.

    Article  Google Scholar 

  • Beneveniste, E. N. and Merrill, J. E., 1986, Interleukin-2 stimulation of oligodendroglial proliferation and maturation, Nature, 321: 610.

    Article  Google Scholar 

  • Bhat, S. and Pfeiffer, S. E., 1986, Stimulation of oligodendrocytes by extracts from astrocyte-enriched cultures, J. Neurosci. Res., 15: 19.

    Article  Google Scholar 

  • Blakemore, W. F., 1972, Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice, J. Neurocytol., 1: 413.

    Article  Google Scholar 

  • Blank, W. F. Jr., Bunge, M. B., and Bunge, R. P., 1974, The sensitivity of the myelin sheath, particularly the Schwann cell axolemmal junction, to lowered calcium levels in cultured sensory ganglia, Brain Res., 67: 503.

    Article  Google Scholar 

  • Blaurock, A. E., 1979, On phasing the small-angle X-ray diffraction pattern from nerve myelin, Biophys. J., 26: 147.

    Article  Google Scholar 

  • Blauroch, A. E., 1981, The spaces between membrane bilayers within PNS myelin as characterized by X-ray diffraction, Brain Res., 210: 383.

    Article  Google Scholar 

  • Boggs, J. M., Stamp, D., Hughes, D. W., and Deber, C. M., 1981, Influence of ether linkage on the lamellar to hexagonal phase transition of ethanolamine phospholipids, Biochem., 20: 5728.

    Article  Google Scholar 

  • Boggs, J. M., Moscarello, M. A., Papahadjopoulos, D., 1982, Structural organization of myelin — role of lipid-protein interactions determined in model systems, in: “Lipid-Protein Interactions”, P. Jost and O. H. Griffith, eds., Academic Press, New York.

    Google Scholar 

  • Braun, P. E., 1984, Molecular organisation of myelin, in: “Myelin”, P. Morell, ed., Plenum Press, New York.

    Google Scholar 

  • Cammer, W., Brosnan, C. F., Basile, C., Bloom, B. R., and Norton, W. T., 1986, Complement potentiates the degradation of myelin proteins by plasmin: implications for a mechanism of inflammatory demyelination, Brain Res., 364: 91.

    Article  Google Scholar 

  • Cashman, N. R., and Noronha, A., 1986, Accessory cell competence of ovine oligodendrocytes in mitogenic activation of human peripheral T cells, J. Immunol., 136: 4460.

    Google Scholar 

  • Curatolo, W., 1986, The interactions of l-palmitoyl-2-oleoylphosphatidyl-choline and bovine brain cerebroside, Biochim. Biophys. Acta, 861: 373.

    Article  Google Scholar 

  • Cyong, J.C., Witkin, S. S., Rieger, B., Barbarese, E., Good, R. A., and Day, N. K., 1982, Antibody-independent complement activation by myelin via the classical complement pathway, J. Exp. Med., 155: 587.

    Article  Google Scholar 

  • Demel, R. A., and de Kruyff, B., 1976, The function of sterols in membranes, Biochim. Biophys. Acta, 457: 109.

    Article  Google Scholar 

  • Dermietzel, R., 1974, Junctions in the central nervous system of the cat, Cell Tissue Res., 148: 565.

    Article  Google Scholar 

  • Desjardins, K. C., and Morell, P., 1983, Phosphate groups modifyng myelin basic proteins are metabolically labile; methyl groups are stable, J.Cell Biol., 97: 438.

    Article  Google Scholar 

  • Epstein, L. G., Prineas, J. W., and Raine, C. S., 1983, Attachment of myelin to coated pits on macrophages in experimental allergic encephalomyelitis, J. Neurol. Sci., 61: 341.

    Article  Google Scholar 

  • Finean, J. B., 1961, The nature and stability of nerve myelin, Int. Rev. Cytol, 12,303.

    Google Scholar 

  • ffrench-Constant, C., and Raff, M. C., 1986, The oligodendrocyte-type-2 astrocyte cell lineage is specialized for myelination, Nature, 323: 335.

    Article  Google Scholar 

  • Fontana, A., Fierz, W., and Wekerle, H., 1984, Astrocytes present myelin basic protein to encephalitogenic T-cell lines, Nature, 307: 273.

    Article  Google Scholar 

  • Golds, E. E., and Braun, P. E., 1978, Protein associations and basic protein conformation in the myelin membrane, the use ofdifluoro-dinitrobenzene as a cross-linking reagent, J. Biol. Chem., 253: 8162.

    Google Scholar 

  • Gregson, N. A., 1977, The surface properties of isolated rat brain myelin: a microelectrophoretic study, J. Neurochem., 29: 895.

    Article  Google Scholar 

  • Gregson, N. A., 1983, The Molecular Biology of Myelin, in: “Multiple Sclerosis. Pathology, diagnosis and management”, J. F. Hallpike, C. W. M. Adams & W. W. Tourtellotte, eds., Chapman & Hall, London.

    Google Scholar 

  • Grundke-Iqbal, I., Raine, C. S., Johnson, A. B., Brosnan, C. F., and Bornstein, M. B., 1981, Experimental allergic encephalomyelitis-Characterisation of serum factors causing demyelination and swelling of myelin, J. Neurol. Sci., 50: 63.

    Article  Google Scholar 

  • Gwarsha, K., Rumsby, M. G., and Little, C., 1984a, Action of phospholipase C (Bacillus Cereus) on isolated myelin sheath preparations, Neurochem. Int., 6: 199.

    Article  Google Scholar 

  • Gwarsha, K., Rumsby, M. G., and Little, C., 1984b, On the disposition of phospholipids in freshly isolated myelin sheath preparations from bovine brain, Neurochem. Int., 6: 599.

    Article  Google Scholar 

  • Hall, S. M. and Gregson, N. A., 1971, The in vivo and ultrastructural effects of injection of lysophosphatidylcholine into myelinated peripheral nerve fibres of the adult mouse, J. Cell Sci., 9: 769.

    Google Scholar 

  • Hall, S. M., 1972, The effect of injections of lysophosphatidylcholine into white matter of the adult mouse spinal cord, J. Cell Sci., 10: 535.

    Google Scholar 

  • Hauser, H., Pascher, I., Pearson, R. H., and Sundell, S., 1981, Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine, Biochim. Biophys. Acta, 650: 21.

    Article  Google Scholar 

  • Henn, F. A. and Thompson, T. E., 1969, Synthetic lipid bilayer membranes, Ann. Revs. Biochem., 38: 241.

    Article  Google Scholar 

  • Hildebrand, C., 1971, Ultrastructural and light-microscopic studies of the developing feline spinal cord white matter. II. Cell death and myelin sheath disintegration in the early postnatal period, Acta Physiol. Scand., 364: 109.

    Google Scholar 

  • Hirano, A., Zimmerman, H. M., and Levine, S., 1966, Myelin in the central nervous system as observed in experimentally induced edema in the rat, J. Cell Biol., 31: 397.

    Article  Google Scholar 

  • Israelachvili, J. N., Marcelja, S. and Horn, R. G., 1980, Physical principles of membrane organization, Quart. Rev. Biophys., 13: 121.

    Article  Google Scholar 

  • Jenkinson, T. J., Kamat, V. B., and Chapman, D., 1969, Physical studies on myelin II., Biochim. Biophys. Acta, 163: 427.

    Google Scholar 

  • Kirschner, D. A., Hollingshead, C. J., Thaxton, C., Caspar, D. L. D., and Goodenough, D. A., 1979, Structural states of myelin observed by X-ray diffraction and freeze-fracture electron microscopy, J. Cell Biol., 82: 140.

    Article  Google Scholar 

  • Kirschner, D. A. and Ganser, A. L., 1982, Myelin labeled with mercuric chloride: Asymmetric localization of phosphatidylethanolamine plasmalogen, J. Mol. Biol., 157: 635.

    Article  Google Scholar 

  • Kirschner, D. A., Ganser, A. L., and Caspar, D. L. D., 1984, Diffraction studies of molecular organisation and membrane interactions in myelin, in: “Myelin”, P. Morell, ed., Plenum Press, New York.

    Google Scholar 

  • Lampert, P. W., Sims, J. K., and Kniazeff, A. J., 1973, Mechanism of demyelination in JHM virus encephalomyelitis, Acta Neuropathol., Berlin, 24: 76.

    Article  Google Scholar 

  • Lampert, P. W., 1978, Autoimmune and virus-induced demyelinating disease, Ann. J. Pathol., 91: 176.

    Google Scholar 

  • Lampert, P., 1983, Fine Structure of the Demyelinating Process, in: “Multiple Sclerosis. Pathology, diagnosis and management”, J. F. Hallpike, C. W. M. Adams and W. W. Tourtellotte, eds., Chapman & Hall, London.

    Google Scholar 

  • Lassmann, H., 1983, Comparative Neuropathology of chronic experimental allergic encephalomyelitis and multiple sclerosis, Springer Verlag, New York.

    Book  Google Scholar 

  • Lassmann, H., Sternberger, H., Kitz, K., and Wisniewski, H. M., 1983, In vivo demyelinating activity of sera from animals with chronic experimental allergic encephalomyelitis, J. Neuro. Sci., 59: 123.

    Article  Google Scholar 

  • Laursen, R. A., Samiullah, M., and Lees, M. B., 1984, Structure of bovine brain myelin proteolipid protein and its organisation in myelin, Proc. Natl. Acad. Sci. (U.S.), 81: 2912.

    Article  Google Scholar 

  • Lees, M. B., Chao, B., Lin, L. H., Samiullah, M., and Laursen, R., 1983, Amino acid sequence of bovine white matter proteolipid, Arch. Biochim. Biophys., 226: 643.

    Article  Google Scholar 

  • Lees, M. B. and Brostoff, S. W., 1984, Proteins of myelin, in: “Myelin”, P. Morell, ed., Plenum Press, New York.

    Google Scholar 

  • Lin, L-F.H. and Lees, M. B., 1982, Interactions of dicyclohexylcarbodiimide with myelin proteolipid, Proc. Natl. Acad. Sci., 79: 941.

    Article  Google Scholar 

  • Linington, C. and Rumsby, M. G., 1980, Accessibility of galactosyl ceramides to probe reagents in central nervous system myelin, J. Neurochem., 35: 983.

    Article  Google Scholar 

  • Linington, C. and Rumsby, M. G., 1981, Galactosyl ceramides of the myelin sheath: thermal studies, Neurochem. Int., 3: 211.

    Article  Google Scholar 

  • Lofgren, H. and Pascher, I., 1977, Molecular arrangements of sphingolipids. The monolayer behaviour of ceramides, Chem. Phys. Lipids, 20: 273.

    Article  Google Scholar 

  • Lohner, K., Hermetter, A., and Paltauf, F., 1984, Phase behaviour of ethanolamine plasmalogen, Chem. Phys. Lip., 34: 163.

    Article  Google Scholar 

  • London, Y. and Vossenberg, F. G. A., 1973, Specific interaction of central nervous system myelin basic protein with lipids, Biochim.Biophys. Acta, 307: 478.

    Article  Google Scholar 

  • Ludwin, S. K., 1978, Central nervous system demyelination and remyelination in the mouse. An ultrastructural study of cuprizone toxicity, Lab. Invest., 39: 597.

    Google Scholar 

  • McIntosh, T. J. and Robertson, J. D., 1976, Observations in the effect of hypotonic solutions on the myelin sheath in the central nervous system, J. Mol. Biol., 100: 213.

    Article  Google Scholar 

  • Martenson, R. E., 1980, Myelin basic protein: What does it do?, in: “Biochemistry of the Brain”, S. Kumar, ed., Wiley, N.Y.

    Google Scholar 

  • Mateu, L. and Luzzati, V., 1973, X-ray diffraction and electron microscope study of the interactions of myelin components. The structure of a lamellar phase with a 150 to 180 Å repeat distance containing basic proteins and acidic lipids, J. Mol. Biol., 75: 697.

    Article  Google Scholar 

  • Moscarello, M. A., Brady, G. W., Fein, D. B., Wood, D. D., and Cruz, T. F., 1986, The role of charge microheterogeneity of basic protein in the formation and maintenance of the multilayered structure of myelin: a possible role in multiple sclerosis, J. Neurosci. Res., 15: 87.

    Article  Google Scholar 

  • Norton, W. T. and Poduslo, S. E., 1973, Myelination in rat brain: changes in myelin composition during brain maturation, J. Neurochem., 21: 759.

    Article  Google Scholar 

  • Oldfield, E. and Chapman, D., 1972, Molecular dynamics of cerebroside-cholesterol and sphingomyelin-cholesterol interactions: implications for myelin membrane structure, FEBS letters., 21: 303.

    Article  Google Scholar 

  • Omlin, F. X., Webster, H. de F., Palkovits, C. G., and Cohen, S. R., 1982, Immunocytochemical localization of basic protein in major dense line regions of central and peripheral myelin, J. Cell Biol., 95: 242.

    Article  Google Scholar 

  • Oxberry, J. M. and Gregson, N. A., 1974, The agglutination of myelin suspensions by specific antisera, Brain Res., 78: 303.

    Article  Google Scholar 

  • Papahadjopoulos, D., Moscarello, M., Eylar, E. H. and Isac, T., 1975, Effects of proteins on thermotropic phase transitions of phospholipids membranes, BiochiM. Biophys. Acta, 401: 317.

    Article  Google Scholar 

  • Pascher, I., 1976, Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability, Biochim. Biophys. Acta, 455: 433.

    Article  Google Scholar 

  • Pascher, I. and Sundell, S., 1977, Molecular arrangements in sphingolipids. The crystal structure of cerebroside, Chem. Phys. Lipids, 20: 175.

    Article  Google Scholar 

  • Peters, A., Sandford, L. P., and Webster, H. de F., 1976, The fine structure of the nervous system, Harper and Row, London.

    Google Scholar 

  • Poduslo, J. F. and Braun, P. E., 1975, Topographical arrangement of membrane proteins in the intact myelin sheath, J. Biol. Chem., 250: 1099.

    Google Scholar 

  • Pritchett, S. M., 1980, M. Phil thesis, University of York.

    Google Scholar 

  • Quarles, R. H., 1984, Myelin-associated glycoprotein in development and disease, Dev. Neurosci., 6: 285.

    Article  Google Scholar 

  • Raff, M. C., Mirsky, R., Fields, K. L., Lisak, R. P., Dorfman, S. H., Silberberg, D. H., Gregson, N. A., Leibowitz, S., and Kennedy, M. C., 1978, Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture, Nature, 274: 813.

    Google Scholar 

  • Raff, M. C., Miller, R. H., and Noble, M., 1983, A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium, Nature, 303: 390.

    Article  Google Scholar 

  • Raff, M. C., Abney, Erika, R., and Fok-Seang, J., 1985, Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation, Cell, 42: 61.

    Article  Google Scholar 

  • Raine, C. S., Johnson, A. B., Marcus, D. M., Suzuki, A., and Bornstein, M. B., 1981, Demyelination in vitro: Absorption studies demonstrate that galactocerebroside is a major target, J. Neurol. Sci., 52: 117.

    Article  Google Scholar 

  • Raine, C. S., 1984, Morphology of myelin and myelination, in: “Myelin”, P. Morell, ed., Plenum Press, New York.

    Google Scholar 

  • Rand, R. P., Fuller, N. L., and Lis, L. J., 1979, Myelin swelling and measurement of forces between myelin membranes, Nature, 279: 258.

    Article  Google Scholar 

  • Reale, E., Luciano, L., and Spitznas, M., 1975, Zonulae occludents of the myelin lamellae in the nerve fibre layer of the retina and in the optic nerve of the rabbit: a demonstration by the freeze-fracture method, J. Neurocytol., 4: 131.

    Article  Google Scholar 

  • Reiber, H., Suckling, A. J., and Rumsby, M. G., 1984, The effects of Freund’s adjuvants on blood-cerebrospinal fluid barrier permeability, J. Neurol. Sci., 63: 55.

    Article  Google Scholar 

  • Rothman, J. and Lenard, J., 1977, Membrane Asymmetry, Science, 195: 743.

    Article  Google Scholar 

  • Rumsby, M. G., 1978, Organization and structure in central-nerve myelin, Biochem. Soc. Trans., 6: 448.

    Google Scholar 

  • Rumsby, M. G. and Crang, A. J., 1977, The myelin sheath a structural examination, in: “The Synthesis, Assembly and Turnover of Cell Surface Components, G. Poste and G. L. Nicolson, eds., Noth Holland Pub. Co., Amsterdam.

    Google Scholar 

  • Rumsby, M. G. and Fish, L. J., 1980, Hypotonic swelling and the structure of myelin lamellae in the central nervous system of normal and jimpy, quaking and shiverer mutant mice; the radial component of myelin, in: “Neurological Mutations Affecting Myelination”, N. Baumann, ed., North-Holland Biomedical Press.

    Google Scholar 

  • Ruocco, M. J. and Shipley, G. G., 1984, Interaction of cholesterol with galactocerebroside and galactocerebroside-phosphatidylcholine bilayer membranes, Biophys. J., 46: 695.

    Article  Google Scholar 

  • Sato, S., Quarles, R. H., and Bradby, R. 0., 1982, Susceptibility of the myelin-associated glycoprotein and basic protein to a neutral protease in highly purified myelin from human and rat brain, J. Neurochem., 39: 97.

    Article  Google Scholar 

  • Schmidt, Q. F., Barenholz, Y., Huang, C., and Thompson, T. E., 1978, Monolayer coupling in sphingomyelin bilayer systems, Nature, 271: 775.

    Article  Google Scholar 

  • Sedzik, J., Blaurock, A. E., and Hochli, M., 1984, Lipid/myelin basic protein multilayers. A model for the cytoplasmic space in central nervous system myelin, J. Mol. Biol., 174: 385.

    Article  Google Scholar 

  • Singer, S. J. and Nicholson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science, 175: 720.

    Article  Google Scholar 

  • Smith, R., 1977, Non-covalent cross-linking of lipid bilayers by myelin basic protein: a possible role in myelin formation, Biochim. Biophys. Acta, 470: 170.

    Article  Google Scholar 

  • Smith, R. and MacDonald, B. J., 1979, Association of myelin basic protein with detergent micelles, Biochim. Biophys. Acta, 554: 133.

    Article  Google Scholar 

  • Smith, K. J., Hall, S. M., and Schauf, C. L., 1985, Vesicular demyelination induced by raised intracellular calcium, J. Neurol. Sci., 71: 19.

    Article  Google Scholar 

  • Stoffel, W., Hillen, H., Schroeder, W., and Deutzman, R., 1983, The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein). Hoppe-Seyler’s Z. Physiol. Chem., 364: 1455.

    Article  Google Scholar 

  • Suzumura, A., Silberberg, D. H., and Lisak, R. P., 1986, The expression of MHC antigens on oligodendrocytes: induction of polymorphic H-2 expression by limphokines, J. Neuroommunol., 11: 179.

    Article  Google Scholar 

  • Tabira, T., Cullen, M. J., Reier, P. J., and de F Webster, H., 1978, An experimental analysis of interlamellar tight junctions in amphibian and mammalian CNS myelin, J. Neurocytol., 7: 489.

    Article  Google Scholar 

  • Townsend, A. R. M., Gotch, F. M., and Davey, J., 1985, Cytotoxic T cells recognize fragments of the influenza nucleoprotein, Cell, 42: 457.

    Article  Google Scholar 

  • Vanguri, P., Koski, C. L., Silverman, B., and Shin, M. L., 1982, Complement activation by isolated myelin: activation of the classical pathway in the absence of myelin-specific antibodies, Proc. Natl. Acad. Sci., 79: 3290.

    Article  Google Scholar 

  • Walker, A. G., and Rumsby, M. G., 1985, The induction of liposome aggregation by myelin basic protein, Neurochem. Int., 74: 441.

    Article  Google Scholar 

  • Walker, A. G., Chapman, J. A., and Rumsby, M. G., 1985, Immunocytochemical demonstration of glial-neuronal interactions and myelinogenesis in subcultures of rat brain cells, J. Neuroimmunol., 9: 159.

    Article  Google Scholar 

  • Webster, H. de F., Shii, H., and Lassmann, H., 1983, Immunocytochemical study of myelin-associated glycoprotein (MAG), Basic protein and glial fibrillary acidic protein (GFAP) in chronic relapsing experimental allergic encephalomyelitis, Acta Neuropath., 65: 177.

    Article  Google Scholar 

  • Wong, G. H. W., Bartlett, P. F., Clark-Lewis, I., Battye, F., and Schrader, J. W., 1984, Inducible expression of H-2 and Ia antigens on brain cells, Nature, 310: 23.

    Article  Google Scholar 

  • Wood, P. M. and Williams, A. K., 1984, Oligodendrocyte proliferation and CNS myelination in cultures containding dissociated embryonic neuroglia and dorsal root ganglion neurons, Dev. Brain. Res., 12: 225.

    Article  Google Scholar 

  • Wood, D. D. and Moscarello, M. A., 1984, Is the myelin membrane abnormal in Multiple Sclerosis?, J. Memb. Biol., 79: 195.

    Article  Google Scholar 

  • Young, P. R., Vacante, D. A., and Snyder, W. R., 1982, Protein-induced aggregation of lipid vesicles. Mechanism of the myelin basic proteinmyelin interaction, J. Am. Chem. Soc., 104: 7287.

    Article  Google Scholar 

  • Young, J. D-E. and Cohn, Z. A., 1986, Cell-mediated killing: a common mechanism?, 1986, Cell, 46: 641.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Rumsby, M.G. (1987). Structural Organisation and Stability of Central Nervous System Myelin. In: Crescenzi, G.S. (eds) A Multidisciplinary Approach to Myelin Diseases. NATO ASI Series, vol 142. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0354-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0354-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0356-6

  • Online ISBN: 978-1-4757-0354-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics