Skip to main content

Central Catecholamines and the Control of Sympathetic Tone

  • Chapter
Central Neural Mechanisms in Cardiovascular Regulation

Abstract

An immense literature describes central neuroanatomic pathways that participate directly or indirectly in the regulation of sympathoadrenal function; a similarly immense literature deals with central neural catecholamines and their receptors, in stress and various neurological and psychiatric disorders. This abundance contrasts with a dearth of information specifically about the roles of catecholamines in the central nervous system in the control of sympathetic function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie ED, Jacobs BL (1987): Single unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and non-stressful stimuli. J Neurosci 7:2837–2843

    Google Scholar 

  • Abercrombie ED, Jacobs BL (1987): Single unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. II Adaptation to chronically presented stressful stimuli. J Neurosci 7:2844–2848

    Google Scholar 

  • Abercrombie ED, Jacobs BL (1988): Systemic naloxone administration potentiates locus coeruleus noradrenergic neuronal activity under stressful but not non-stressful conditions. Brain Res 441:362–366

    Article  Google Scholar 

  • Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ (1989): Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52:1655–1658

    Article  Google Scholar 

  • Abercrombie ED, Keller RW Jr, Zigmond MJ (1988): Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: Pharmacological and behavioral studies. Neuroscience 27:897–904

    Article  Google Scholar 

  • Abercrombie ED, Nisenbaum LK, Zigmond MJ (1992): Impact of acute and chronic stress on the release and synthesis of norepinephrine in brain: Microdialysis studies in behaving animals. In: Stress: Neuroendocrine and Molecular Approaches, Kvetnansky R, McCarty R, Axelrod J, eds. New York: Gordon and Breach Science Publishers

    Google Scholar 

  • Abercrombie ED, Zigmond MJ (1989): Partial injury to central noradrenergic neurons: Reduction of tissue norepinephrine content is greater than reduction of extracellular norepinephrine measured by microdialysis. J Neurosci 9:4062–4067

    Google Scholar 

  • Acheson AL, Zigmond MJ (1981): Short-and long-term changes in tyrosine hydroxylase activity in rat brain after subtotal destruction of central noradrenergic neurons. J Neurosci 1:493–504

    Google Scholar 

  • al-Damluji S (1991): Measuring the activity of brain adrenergic receptors in man. J Endocrinol Invest 14:245–254

    Google Scholar 

  • al-Damluji S, Bouloux P, White A, Besser M (1990): The role of alpha-2-adrenoceptors in the control of ACTH secretion; interaction with the opioid system. Neuroendocrinology 51:76–81

    Article  Google Scholar 

  • al-Damluji S, Perry L, Tomlin S, Bouloux P, Grossman A, Rees LH, Besser GM (1987): Alpha-adrenergic Stimulation of corticotropin secretion by a specific central mechanism in man. Neuroendocrinology 45:68–76

    Article  Google Scholar 

  • al-Damluji S, Thomas R, White A, Besser M (1990): Vasopressin mediates alpha 1-adrenergic stimulation of adrenocorticotropin secretion. Endocrinology 126:1989–1995

    Article  Google Scholar 

  • al-Damluji S, White A, Besser M (1990): Brattleboro rats have deficient adrenocorticotropin responses to activation of central α1-adrenoceptors. Endocrinology 127:2849–2853

    Article  Google Scholar 

  • Alexander RS (1946): Tonic and reflex functions of medullary sympathetic cardiovascular centers. J Neurophysiol 9:205–217

    Google Scholar 

  • Amaral DG, Foss JA (1975): Locus coeruleus lesions and learning. Science 188:377–378

    Article  Google Scholar 

  • Amaral DG, Sinnamon HM (1977): The locus coeruleus: neurobiology of a central noradrenergic nucleus. Prog Neurobiol 9:147–196

    Article  Google Scholar 

  • Astier B, Van Bockstaele EJ, Aston-Jones G, Pieribone VA (1990): Anatomical evidence for multiple pathways leading from the rostral ventrolateral medulla (nucleus paragigantocellularis) to the locus coeruleus in the rat. Neurosci Lett 118:141–146

    Article  Google Scholar 

  • Aston-Jones G (1985): Behavioral functions of locus coeruleus derived from cellular attributes. Physiol Psychol 13:118–126

    Google Scholar 

  • Aston-Jones G, Bloom FE (1981a): Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    Google Scholar 

  • Aston-Jones G, Bloom FE (1981b): Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1:887–890

    Google Scholar 

  • Aston-Jones G, Ennis M, Pieribone VA, Nickell W, Shipley MT (1986): The brain nucleus locus coeruleus: Restricted afferent control of a broad efferent network. Science 234:734–737

    Article  Google Scholar 

  • Aston-Jones G, Shipley MT, Ennis M, Williams JT, Pierbone VA (1990): Restricted afferent control of locus coeruleus neurones revealed by anatomical, physiological, and pharmacological studies. In: The Pharmacology of Noradrenaline in the Central Nervous System, Heal DJ, Marsden CA, eds. New York: Oxford University Press

    Google Scholar 

  • Bandler R (1985): Identification of hypothalamic and midbrain periaquaductal gray neurones mediating aggressive and defense behavior by intracerebral microinjection of excitatory amino acids. In: Modulation of Sensorimotor Activity during Alterations in Behavioral States, Bandler R, eds. New York: Alan R. Liss

    Google Scholar 

  • Bard P (1928): A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Physiol 84:490–516

    Google Scholar 

  • Barker JL, Crayton JW, Nicoll RA (1971): Noradrenaline and acetylcholine responses of supraoptic neurosecretory cells. J Physiol 218:19–32

    Google Scholar 

  • Barman SM, Gebber GL (1980): Sympathetic nerve rhythm of brain stem origin. Am J Physiol 239:R42–R47

    Google Scholar 

  • Barnes KL, Ferrario CM (1987): Differential effects of angiotensin II mediated by the area postrema and the anteroventral third ventricle. In: Brain Peptides and Catecholamines in Cardiovascular Regulation, Buckley JP, Ferrario CM, eds. New York: Raven Press

    Google Scholar 

  • Barron KW, Heesch CM (1990): Cardiovascular effects of posterior hypothalamic stimulation in baroreflex-denervated rats. Am J Physiol 259:H720–H727

    Google Scholar 

  • Bartolini G, Zivkovic B, Scatton B (1988): Dopaminergic neurons: Basic aspects. In: Catecholamines I, Trendelenburg U, Weiner N, eds. New York: Springer-Verlag

    Google Scholar 

  • Bartorelli C, Bizzi E, Libretti A, Zanchetti A (1960): Inhibitory control of sinocarotid pressoceptive afferents on hypothalamic autonomic activity and sham rage behavior. Arch Ital Biol 98:308–326

    Google Scholar 

  • Bellin SI, Bhatnagar RK, Johnson AK (1987): Periventricular noradrenergic systems are critical for angiotensin-induced drinking and blood pressure responses. Brain Res 403:105–112

    Article  Google Scholar 

  • Benetos A, Gavras I, Gavras H (1986): Norepinephrine applied in the paraventricular hypothalamuc nucleus stimulates vasopressin release. Brain Res 381:322–326

    Article  Google Scholar 

  • Bennett GW (1990): Functional interactions between neuropeptides and noradrenaline in the brain and spinal cord. In: The Pharmacology of Noradrenaline in the Central Nervous System, Heal DJ, Marsden CA, eds. New York: Oxford University Press

    Google Scholar 

  • Bernard C (1852): Influence du grand sympathique sur la sensibilite et sur la calorification. C R Soc Biol (Paris) 3:162–164

    Google Scholar 

  • Bernard C (1878): Lecons sur les Phenomenones de la Vie Communs aux Animaux et aux Vegetaux. Paris: Ballierre et Fils

    Google Scholar 

  • Bird SJ, Kuhar MJ (1977): Iontophoretic application of opiates to the locus coeruleus. Brain Res 122:523–533

    Article  Google Scholar 

  • Bishop VS, Hasser EM, Undesser KP (1987): Vasopressin and sympathetic nerve activity: Involvement of the area postrema. In: Brain Peptides and Catecholamines in Cardiovascular Regulation, Buckley JP, Ferrario CM, eds. New York: Raven Press

    Google Scholar 

  • Bjorklund A, Lindvall O (1986): Catecholaminergic brain stem regulatory systems. In: The Nervous System, Section 1, Handbook of Physiology, Mountcastle VB, ed. Bethesda, MD: American Physiological Society

    Google Scholar 

  • Bjorklund A, Stenevi U (1979): Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system. Physiol Rev 59:62–100

    Google Scholar 

  • Blessing WW (1988): Depressor neurons in rabbit caudal medulla act via GABA receptors in rostral medulla. Am J Physiol 254:H686–H692

    Google Scholar 

  • Blessing WW, Goodchild AK, Dampney RAL, Chalmers JP (1981): Cell groups in the lower brainstem of the rabbit projecting to the spinal cord, with special reference to catecholamine-containing neurons. Brain Res 221:35–55

    Article  Google Scholar 

  • Blessing WW, Hedger SC, Joh TH, Willoughby JO (1987): Neurons in the area postrema are the only catecholamine-synthesizing cells in the medulla or pons with projections to the rostral ventrolateral medulla (C1-area) in the rabbit. Brain Res 419:336–340

    Article  Google Scholar 

  • Blessing WW, Li YW (1989): Inhibitory vasomotor neurons in the caudal ventrolateral region of the medulla oblongata. Prog Brain Res 81:83–97

    Article  Google Scholar 

  • Blessing WW, Oliver JR, Hodgson AH, Joh TH, Willoughby JO (1987): Neuropeptide Y-like immunoreactive C1 neurons in the rostral ventrolateral medulla of the rabbit project to sympathetic preganglionic neurons in the spinal cord. J Auton Nerv Sys 18:121–129

    Article  Google Scholar 

  • Blessing WW, Reis DJ (1982): Inhibitory cardiovascular function of neurons in the caudal ventrolateral medulla of the rabbit: relationships to the area containing A1 noradrenergic cells. Brain Res 253:161–171

    Article  Google Scholar 

  • Blessing WW, Sved AF, Reis DJ (1982): Destruction of noradrenergic neurons in rabbit brainstem elevates plasma vasopressin, causing hypertension. Science 217:661–663

    Article  Google Scholar 

  • Bloom FE, Schulman JA, Koob GF (1989): Catecholamines and behavior. In: Catecholamines II, Trendelenburg U, Weiner N, eds. New York: Springer-Verlag

    Google Scholar 

  • Bonvallet M, Allen MB (1963): Prolonged spontaneous and evoked reticular activation following bulbar lesions. Electroencephalog Clin Neurophysiol 15:969–988

    Article  Google Scholar 

  • Boudier HS, Smeets G, Brouwer G, Van Rossum JM (1975): Central nervous system alpha-adrenergic mechanisms and cardiovascular regulation in rats. Arch Int Pharmacodyn Ther 213:285–293

    Google Scholar 

  • Bousquet P, Feldman J (1987): The blood pressure effects of alpha-adrenoceptor antagonists injected in the medullary site of action of Clonidine: The nucleus reticularis lateralis. Life Sci 40:1045–1052

    Article  Google Scholar 

  • Bousquet P, Feldman J, Schwartz J (1984): Central cardiovascular effects of alpha-adrenergic drugs; differences between catecholamines and imidazolines. J Pharmacol Exp Ther 230:232–236

    Google Scholar 

  • Bousquet P, Feldman J, Tibirica E, Bricca G, Molines A, Dontenwill M, Belcourt A (1989): New concepts on the central regulation of blood pressure. Alpha 2-adrenoceptors and “imidazoline receptors.” Am J Med 87:10S–13S

    Article  Google Scholar 

  • Brady LS, Whitfield HJ Jr, Fox RJ, Gold PW, Herkenham M (1991): Long-term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. Therapeutic implications. J Clin Invest 87:831–837

    Article  Google Scholar 

  • Brodie BB, Costa E (1962): Some current views on brain monoamines. Psychopharmacol Serv Cent Bull 2:1–25

    Google Scholar 

  • Brody MJ, Alper RH, O’Neill TP, Porter JP (1986): Central neural control of the cardiovascuolar system. In: Handbook of Hypertension, Vol. 8: Pathophysiology of Hypertension-Regulatory Mechanisms. Zanchetti A, Tarazi RC, eds. New York: Elsevier

    Google Scholar 

  • Brody MJ, Johnson AK (1981): The role of forebrain structures in models of experimental hypertension. In: Disturbances in Neurogenic Control of the Circulation. Abboud FM, Fozzard HA, Gilmore JP, Reis DJ, eds. Bethesda, MD: American Physiological Society

    Google Scholar 

  • Brody MJ, Natelson BH (1987): Task Force 3: Behavioral mechanisms in hypertension. Circulation 76(Suppl 1):I–95–I–100

    Google Scholar 

  • Brody MJ, O’Neill TP, Porter JP (1986): Role of paraventricular and arcuate nuclei in cardiovascular regulation. In: Central and Peripheral Mechanisms of Cardiovascular Regulation, Magro A, Osswald W, Reid D, Vanhoutte P, eds. New York: Plenum

    Google Scholar 

  • Brown MR (1981): Thyrotropin releasing factor: A putative CNS regulator of the autonomic nervous system. Life Sci 28:1789–1795

    Article  Google Scholar 

  • Brown MR (1986): Corticotropin releasing factor: Central nervous system sites of action. Brain Res 399:10–14

    Article  Google Scholar 

  • Brown MR (1991): Neuropeptide-mediated regulation of the neuroendocrine and autonomic responses to stress. In: Stress, Neuropeptides, and Systemic Disease, McCubbin JW, Kaufman PG, Nemeroff CB, eds. New York: Academic Press

    Google Scholar 

  • Brown MR, Fisher LA (1984): Brain peptide regulation of adrenal epinephrine secretion. Am J Physiol 10:E41–E46

    Google Scholar 

  • Brown MR, Fisher LA (1985): Corticotropin-releasing factor: effects on the autonomic nervous system and visceral systems. Fed Proc 44:234–248

    Google Scholar 

  • Brown MR, Fisher LA (1986): Glucocorticoid suppression of the sympathetic nervous system and adrenal medulla. Life Sci 39:1003–1012

    Article  Google Scholar 

  • Brown MR, Gray TS (1988): Peptide injections in the amygdala of conscious rats: effects on blood pressure, heart rate and plasma catecholamines. Reg Pept 21:95–106

    Article  Google Scholar 

  • Brown MR, Gray TS, Fisher LA (1986): Corticotropin-releasing factor receptor antagonist: effects on the autonomic nervous system and cardiovascular function. Reg Pept 16:321–329

    Article  Google Scholar 

  • Brown MR, Hauger R, Fisher LA (1988): Autonomic and cardiovascular effects of corticotropin-releasing factor in the spontaneously hypertensive rat. Brain Res 441:33–40

    Article  Google Scholar 

  • Brown MR, Koob GF, Rivier C, eds. (1991): Stress: Neurobiology and Neuroendocrinology. New York: Marcel Dekker

    Google Scholar 

  • Brown-Sequard CE (1852): Experimental researches applied to physiology and pathology. Med Exam (Phila.) 8:481–504

    Google Scholar 

  • Burnstock G (1990): Changes in expression of autonomic nerves in aging and disease. J Auton Nerv Sys 30:S25–S34

    Article  Google Scholar 

  • Byrum CE, Guyenet PG (1987): Afferent and efferent connections of the A5 noradrenergic cell group in the rat. J Comp Neurol 261:529–542

    Article  Google Scholar 

  • Calaresu FR, Ciriello J, Caverson MM, Cechetto DF, Krukoff TL (1984): Functional neuroanatomy of central pathways controlling the circulation. In: Hypertension and the Brain. Guthrie GP Jr, Kotchen TA, eds. New York: Futura

    Google Scholar 

  • Camacho A, Phillips MI (1981): Separation of drinking and pressor responses to central angiotensin by monoamines. Am J Physiol 240:R106–R113

    Google Scholar 

  • Cannon B (1931): The effects of progressive sympathectomy on blood pressure. Am J Physiol 97:592–595

    Google Scholar 

  • Cannon WB (1929): Bodily Changes in Pain, Hunger, Fear and Rage. New York: D. Appleton and Co

    Google Scholar 

  • Cannon WB (1939a): The Wisdom of the Body. New York: WW Norton

    Google Scholar 

  • Cannon WB (1939b): A law of denervation. Am J Med Sci 198:737–750

    Article  Google Scholar 

  • Cannon WB, Britton SW (1925): Studies on the conditions of activity in endocrine glands. XV. Pseudoaffective medulliadrenal secretion. Am J Physiol 72:283–294

    Google Scholar 

  • Cassell MD, Gray TS (1989): The amygdala directly innervates adrenergic (C1) neurons in the ventrolateral medulla in the rat. Neurosci Lett 97:163–168

    Article  Google Scholar 

  • Castagne V, Rivet JM, Mormede P (1990): The integrity of the ventral noradrenergic bundle (VNAB) is not necessary for a normal neuroendocrine stress response. Brain Res 511:349–352

    Article  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1977): Catecholamine receptors on locus coeruleus neurons: Pharmacological characterization. Eur J Pharmacol 44:375–385

    Article  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1978a): Activation of locus coeruleus neurons by peripheral stimuli: Modulation by a collateral inhibitory mechanism. Life Sci 23:1383–1392

    Article  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1978b): Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J Comp Neurol 178:1–16

    Article  Google Scholar 

  • Chai CY, Lin AMY, Hu SR, et al. (1991): Sympathoadrenal excitation and inhibition by lower brainstem stimulation in cats. J Auton Nerv Sys 33:35–46

    Article  Google Scholar 

  • Chai CY, Share NN, Wang SX (1963): Central control of cardiac augmentation in lower brain stem of the cat. Am J Physiol 205:749–753

    Google Scholar 

  • Chai CY, Wang SC (1966): Cardiovascular actions of diazepam in the cat. J Pharmacol Exp Ther 154:271–280

    Google Scholar 

  • Chalmers J (1975): Brain amines and models of experimental hypertension. Circ Res 36:469–480

    Google Scholar 

  • Chalmers J, Pilowsky P (1991): Brainstem and bulbospinal neurotransmitter systems in the control of blood pressure. J Hyperterns 9:675–694

    Article  Google Scholar 

  • Chapman WP, Schroeder HR, Geyer G, et al. (1954): Physiological evidence concerning importance of the amygdaloid nuclear region in the integration of circulatory function in man. Science 120:949–950

    Article  Google Scholar 

  • Charney DS, Heninger GR, Breier A (1984): Noradrenergic function in panic activity. Effects of yohimbine in healthy subjects and patients with agoraphobia and panic disorder. Arch Gen Psychiatry 41:751–763

    Article  Google Scholar 

  • Charney DS, Heninger GR, Redmond DE Jr (1983): Yohimbine induced anxiety and increased noradrenergic function in humans: Effects of diazepam and Clonidine. Life Sci 33:19–29

    Article  Google Scholar 

  • Charney DS, Redmond DR Jr (1983): Neurobiological mechanisms in human anxiety. Evidence supporting central noradrenergic hyperactivity. Neuropharmacology 22:1531–1536

    Article  Google Scholar 

  • Chiodo LA, Acheson AL, Zigmond MJ, Stricker EM (1983): Subtotal destruction of central noradrenergic projections increases the firing rate of locus coeruleus cells. Brain Res 264:123–126

    Article  Google Scholar 

  • Ciriello J, Calaresu FR (1977): Lateral reticular nucleus: a site of somatic and cardiovascular integration in the cat. Am J Physiol 233:R100–R109

    Google Scholar 

  • Ciriello J, Calaresu FR (1981): Projections from buffer nerves to the nucleus of the solitary tract: An anatomical and electrophysiological study in the cat. J Auton Nerv Sys 3:299–310

    Article  Google Scholar 

  • Ciriello J, Kline RL, Zhang T-X, Caverson MM (1984): Lesions of the paraventricular nucleus alter the development of spontaneous hypertension in the rat. Brain Res 310:355–359

    Article  Google Scholar 

  • Ciriello J, Rohlicek CV, Polosa C (1983): Aortic baroreceptor reflex pathway: A functional mapping using [3H]2-deoxyglucose autoradiography in the rat. J Auton Nerv Sys 8:111–128

    Article  Google Scholar 

  • Conlay LA (1988): The effects of tyrosine on blood pressure. In: Neurocardiology, Kulbertus HE, Franck G, eds. Mount Kisco, NY: Futura Publishing Co

    Google Scholar 

  • Connor HE, Drew GM (1987): Do adrenaline-containing neurones from the rostral ventrolateral medulla excite preganglionic sympathetic cell bodies? J Auton Pharmac 7:87–96

    Article  Google Scholar 

  • Cooper A (1836): Some experiments and observations on tying the carotid and vertebral arteries, and the pneumogastric phrenic and sympathetic nerves. Guys Hosp Rep 1:457–472

    Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (1991): The Biochemical Basis of Neuropharmacology. New York: Oxford University Press

    Google Scholar 

  • Cox BF, Bishop VS (1991): Neural and humoral mechanisms of angiotensin-dependent hypertension. Am J Physiol 261:H1284–H1291

    Google Scholar 

  • Cox BF, Brody MJ (1989): Subregions of rostral ventral medulla control arterial pressure and regional hemodynamics. Am J Physiol 257:R635–R640

    Google Scholar 

  • Cunningham ET, Sawchenko PE (1988): Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuelci of the rat hypothalamus. J Comp Neurol 274:60–76

    Article  Google Scholar 

  • Cunningham ET Jr, Sawchenko PE (1989): A circumscribed projection from the nucleus of the solitary tract to the nucleus ambiguus in the rat: Evidence for somatostatin-28-immunoreactive intemeurons subserving relfex control of esophageal motility. J Neurosci 9:1668–1682

    Google Scholar 

  • Cyon E (1907): Die Nerven des Herzens. Ihre Anatomie und Physiologie. Berlin: Springer-Verlag

    Google Scholar 

  • Dahlstrom A, Fuxe K (1964): Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 232:1–55

    Google Scholar 

  • Dahlstrom A, Fuxe K (1965): Evidence for the existence of monoamine-containing neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol Scand Suppl 247:1–36

    Google Scholar 

  • Day TA (1989): Control of neurosecretory vasopressin cells by noradrenergic projections of the caudal ventrolateral medulla. Prog Brain Res 81:303–317

    Article  Google Scholar 

  • Day TA, Renaud LP (1984): Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons. Brain Res 303:233–240

    Article  Google Scholar 

  • Dearry A, Gingrich JA, Falardeau P, Fremeau RT Jr, Bates MD, Caron MG (1990): Molecular cloning and expression of the gene for a human D1 receptor. Nature 347:72–76

    Article  Google Scholar 

  • De Sarro GB, Ascioti C, Froio F, Libri V, Nistico G (1987): Evidence that locus coeruleus is the site where Clonidine and drugs acting at alpha 1-and alpha 2-adrenoceptors affect sleept and arousal mechanisms. Br J Pharmacol 90:675–685

    Google Scholar 

  • Dietl H (1985): Temporal relationship between noradrenaline release in the central amygdala and plasma noradrenaline secretion in rats and tree shrews. Neurosci Lett 55:41–46

    Article  Google Scholar 

  • Dietl H, Sinha JN, Philippu A (1981): Presynaptic regulation of the release of catecholamines in the cat hypothalamus. Brain Res 208:213–218

    Article  Google Scholar 

  • Dionne R, Goldstein DS, Wirdzek PR, Keiser HR, Dubner R (1984): Effects of diazepam premedication and epinephrine-containing local anesthetic on circulatory and plasma catecholamine responses to minor surgery. Anesthes Analg 63:640–646

    Google Scholar 

  • Dittmar C (1870): Ein neuer Beweis fĂĽr die Reizbarkeit der centripatelen Fasern des Ruckenmarks. Sachs Akad Wiss Sitz 22:18–45

    Google Scholar 

  • Doba N, Reis DJ (1973): Acute fulminating neurogenic hypertension produced by brainstem lesions in rat. Circ Res 32:584–593

    Google Scholar 

  • Docherty JR, McGrath JC (1979): Inhibition of sympathetic transmission in rat heart by Clonidine: The roles of stimulation frequency, endogenous feedback and noradrenaline re-uptake. Naunyn-Schmiedeberg’s Arch Pharmacol 309:225–233

    Article  Google Scholar 

  • Dorward PK, Rudd CD (1991): Influence of brain renin-angiotensin system on renal sympathetic and cardiac baroreflexes in conscious rabbits. Am J Physiol 260:H770–H778

    Google Scholar 

  • Doxey JC, Everitt J (1977): Inhibitory effects of Clonidine on responses to sympathetic nerve stimulation in the pithed rat. Br J Pharmacol 61:559–566

    Google Scholar 

  • Due BR, Schwaber JS (1990): Bulbar origin of catecholaminergic projections to the central amygdaloid nucleus in the rat. Neurosci Abst No. 234.22

    Google Scholar 

  • Dworkin BR, Filewich RJ, Miller NE, Craigmyle N, Pickering TG (1979): Baroreceptor activation reduces reactivity to noxious stimulation: Implications for hypertension. Science 205:1299–1301

    Article  Google Scholar 

  • Eisenhofer G, Cox HS, Esler MD (1991): Noradrenaline reuptake and plasma dihydroxyphenylglycol during sustained changes in sympathetic activity in rabbits. J Auton Nerv Sys 32:217–232

    Article  Google Scholar 

  • Elam M, Svensson TH, Thoren P (1985): Differentiated cardiovascular afferent regulation of locus coeruleus neurons and sympathetic nerves. Brain Res 358:77–84

    Article  Google Scholar 

  • Elam M, Svensson TH, Thoren P (1986a): Locus coeruleus neurons and sympathetic nerves: Activation by cutaneous sensory afferents. Brain Res 375:117–125

    Article  Google Scholar 

  • Elam M, Thoren P, Svensson TH (1986b): Locus coeruleus neurons and sympathetic nerves: Activation by visceral afferents. Brain Res 375:117–125

    Article  Google Scholar 

  • Elam M, Yao T, Svensson TH, Thoren P (1984): Regulation of locus coeruleus neurons and splanchnic, sympathetic nerves by cardiovascular afferents. Brain Res 290:281–287

    Article  Google Scholar 

  • Eliasson S, Folkow B, Lindren O, Uvnas B (1951): Activation of sympathetic vasodilator nerves to the skeletal muscles in the cat by hypothalamic stimulation. Acta Physiol Scand 23:333–351

    Article  Google Scholar 

  • Ennis M, Aston-Jones G (1986): A potent excitatory input to the nucleus locus coeruleus from the ventrolateral medulla. Neurosci Lett 71:299–305

    Article  Google Scholar 

  • Ennis M, Aston-Jones G (1989): Potent inhibitory input to locus coeruleus from the nucleus prepositus hypoglossi. Brain Res Bull 22:793–803

    Article  Google Scholar 

  • Emsberger P, Meeley MP, Reis DJ (1986): An endogenous clonidine-like substance binds preferentially to imidazole binding sites in the ventrolateral medulla labeled by 3H-para-aminoclonidine. J Hypertens 4(Suppl 5):S109–S111

    Google Scholar 

  • Everitt BJ, Robbins TW, Seiden NRW (1990): Functions of the locus coeruleus noradrenergic system: A neurobiological and behavioural synthesis. In: The Pharmacology of Noradrenaline in the Central Nervous System, Heal DJ, Marsden CA, eds. New York: Oxford University Press

    Google Scholar 

  • Falck B (1962): Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta Physiol Scand Suppl 197:1–25

    Google Scholar 

  • Falck B, Hillarp N-A, Thieme G, Torp A (1962): Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    Article  Google Scholar 

  • Farsang C, Kunos G (1979): Naloxone reverses the antihypertensive effect of Clonidine. Br J Pharmacol 67:161–164

    Google Scholar 

  • Feldman S, Conforti N, Melamed E (1988): Involvement of ventral noradrenergic bundle in corticosterone secretion following neural stimuli. Neuropharmacology 27:129–133

    Article  Google Scholar 

  • Ferguson AV, Renaud LP (1984): Hypothalamic periventricular nucleus lesions decrease pressor responses to subfornical organ stimulation. Brain Res 305:361–364

    Article  Google Scholar 

  • Feuerstein G, Hassan AH, Faden AI (1983): TRF: Cardiovascular and sympathetic modulation in brain nuclei of the rat. Peptides 4:617–620

    Article  Google Scholar 

  • Folkow B (1982): Physiological aspects of primary hypertension. Physiol Rev 62:347–504

    Google Scholar 

  • Folkow B (1987): Physiology of behavior and blood pressure regulation in animals. In: Handbook of Hypertension, Vol. 9, Behavioral Factors in Hypertension, Julius S, Bassett DR, eds. New York: Elsevier

    Google Scholar 

  • Folkow B (1988): Stress, hypothalamic function and neuroendocrine consequences. Acta Med Scand Suppl 723:61–69

    Google Scholar 

  • Folkow B, Di Bona GF, Hjemdahl P, Thoren PH, Wallin BG (1983): Measurement of plasma norepinephrine concentrations in human primary hypertension: A word of caution on their applicability for assessing neurogenic contributions. Hypertension 5:399–403

    Google Scholar 

  • Folkow B, Hallback-Norlander M, Martner J, Nordborg C (1982): Influence of amygdala lesions on cardiovascular responses to alerting stimuli, on behaviour and on blood pressure development in spontaneously hypertensive rats. Acta Physiol Scand 116:133–139

    Article  Google Scholar 

  • Folkow B, Karlstrom G (1984): Age-and pressure-dependent changes of systemic resistance vessels concerning the relationships between geometric design, wall distensibility, vascular reactivity and smooth muscle sensitivity. Acta Physiol Scand 122:17–33

    Article  Google Scholar 

  • Folkow B, Rubinstein EH (1966): Cardiovascular effect of acute and chronic stimulation of the hypothalamic defense area in the rat. Acta Physiol Scand 68:48–57

    Article  Google Scholar 

  • Folkow B, Uvnas B (1948): The distribution and functional significance of sympathetic vasodilators to the hind limbs of the cat. Acta Physiol Scand 15:389–400

    Article  Google Scholar 

  • Folkow B, von Euler US (1954): Selective activation of noradrenaline and adrenaline producing cells in the cat’s adrenal gland by hypothalamic stimulation. Circ Res 2:191–195

    Google Scholar 

  • Foote SL, Aston-Jones G, Bloom EE (1980): Impulse activity of locus coeruleus neurons in awake rats and squirrel monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci 77:3033–3037

    Article  Google Scholar 

  • Foote SL, Bloom EE, Aston-Jones G (1983): Nucleus locus coeruleus: New evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    Google Scholar 

  • Fomai F, Blandizzi C, del Tacca M (1990): Central alpha-2 adrenoceptors regulate central and peripheral functions. Pharmacol Res 22:541–554

    Article  Google Scholar 

  • Fort P, el Mansari M, Salvert D, Jouvet M (1990): Lower brainstem afferents to the cat posterior hypothalamus: A double-labeling study. Brain Res Bull 24:437–455

    Article  Google Scholar 

  • Fritschy J-M, Grzanna R (1990): Distribution of locus coeruleus axons within the rat brainstem demonstrated by Phaseolus vulgaris leucoagglutinin anterograde tracing in combination with dopamine-β-hydroxylase immunofluorescence. J Comp Neurol 293:616–631

    Article  Google Scholar 

  • Fritschy J-M, Lyons WE, Mullen CA, Kosofsky BE, Mooliver ME, Grzanna R (1987): Distribution of locus coeruleus axons in the rat spinal cord: A combined anterograde transport and immunohistochemical study. Brain Res 437:176–180

    Article  Google Scholar 

  • Galosy RA, Clarke LE, Vasko RM, Crawford IL (1981): Neurophysiology and neuropharmacology of cardiovascular regulation and stress. Neurosci Biobehav Rev 5:137–175

    Article  Google Scholar 

  • Garty M, Deka-Starosta A, Chang PC, et al. (1989): Plasma levels of catechols during reflexive changes in sympathetic nerve activity. Neurochem Res 14:523–531

    Article  Google Scholar 

  • Garty M, Deka-Starosta A, Chang P, Kopin IJ, Goldstein DS (1990): Effects of Clonidine on renal sympathetic nerve activity and norepinephrine spillover. J Pharmacol Exp Ther 254:1068–1074

    Google Scholar 

  • Gaskell WH (1883–1884): On the innervation of the heart. J Physiol 4:43–127

    Google Scholar 

  • Gebber GL (1984): Brainstem systems involved in cardiovascular regulation. In: Nervous Control of Cardiovascular Function, Randall WC, eds. New York: Oxford University Press

    Google Scholar 

  • Gebber GL, Barman SM (1980): Rhythmogenesis in the sympathetic nervous system. Fed Proc 39:2526–2530

    Google Scholar 

  • Gebber GL, Snyder DW (1969): Hypothalamic control of baroreceptor reflexes. Am J Physiol 218:124–131

    Google Scholar 

  • Gilbey MP, Coote JH, Fleetwood-Walker S, Petersen DF (1982): The influence of the paraventricular-spinal pathway, and oxytocin and vasopressin on sympathetic preganglionic neurones. Brain Res 251:283–290

    Article  Google Scholar 

  • Gold PW, Goodwin FK, Chrousos GP (1988): Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress. N Engl J Med 319:348–353, 413–420

    Article  Google Scholar 

  • Gold PW, Loriaux L, Roy A, et al. (1986): Responses of corticotropin-releasing hormone in the hypercortisolemia of depression and Cushing’s disease. N Engl J Med 314:1329–1335

    Article  Google Scholar 

  • Goldberg MR, Hollister AS, Robertson D (1983): Influence of yohimbine on blood pressure, autonomic reflexes, and plasma catecholamines in humans. Hypertension 5:772–778

    Google Scholar 

  • Goldberg MR, Jackson RV, Krakau J, Island DP, Robertson D (1986): Influence of yohimbine on release of anterior pituitary hormones. Life Sci 39:395–398

    Article  Google Scholar 

  • Goldstein DS, Eisenhofer G, Stull R, Folio CJ, Keiser HR, Kopin IJ (1988): Plasma dihyroxyphenyglycol and the intraneuronal disposition of norepinephrine in humans. J Clin Invest 81:213–220

    Article  Google Scholar 

  • Goldstein DS, Nadi NS, Stull R, Wyler AR, Porter RJ (1988): Catecholamines and DOPA in epileptogenic and non-epileptogenic regions of the human brain. J Neurochem 50:225–229

    Article  Google Scholar 

  • Goltz F (1892): Der Hund ohne Grosshirn. PflĂĽgers Arch 51:570–614

    Article  Google Scholar 

  • Granata AR, Kumada M, Reis DJ (1985): Sympathoinhibition by A1-noradrenergic neurons is mediated by neurons in the C1 area of the rostral medulla. J Auton Nerv Sys 14:387–395

    Article  Google Scholar 

  • Granata AR, Numao Y, Kumada M, Reis DJ (1986): A1 noradrenergic neurons tonically inhibit sympathoexcitatory neurons of C1 area in rat brain stem. Brain Res 377:127–146

    Article  Google Scholar 

  • Granata AR, Ruggiero DA, Park DH, John TH, Reis DJ (1985): Brain stem area with C1 epinephrine neurons mediates baroreflex vasopressor responses. Am J Physiol 248:H547–H567

    Google Scholar 

  • Grant SJ, Redmond DE (1984): Neuronal activity of the locus coeruleus in awake Macaca arctoides. Exp Neurol 84:701–708

    Article  Google Scholar 

  • Gray TS (1991a): Limbic pathways and neurotransmitters as mediators of autonomic and neuroendocrine responses to stress. In: Stress Neurobiology and Neuroendocrinology, Brown MR, Koob GF, Rivier C, eds. New York: Marcel Dekker

    Google Scholar 

  • Gray TS (1991b): Amygdala: Role in autonomic and neuroendocrine responses to stress. In: Stress, Neuropeptides, and Systemic Disease, McCubbin JW, Kaufman PG, Nemeroff CB, eds. New York: Academic Press

    Google Scholar 

  • Green AR (1990): The effects of antidepressant drugs on noradrenergic receptor mechanisms in the central nervous system. In: The Pharmacology of Noradrenaline in the Central Nervous System, Heal DJ, Marsden CA, eds. New York: Oxford University Press

    Google Scholar 

  • Gross PM, Wainman DS, Shaver SW, Wall KM, Ferguson AV (1990): Metabolic activation of efferent pathways from the rat area postrema. Am J Physiol 258:R788–97

    Google Scholar 

  • Gross-Isseroff R, Dillon KA, Fieldust SJ, Biegon A (1990): Autoradiographic analysis of α1-noradrenergic receptors in the human brain postmortem. Effect of suicide. Arch Gen Psychiatry 47:1049–1053

    Article  Google Scholar 

  • Grossman E, Chang PC, Hoffman A, Tamrat M, Goldstein DS (1991): Evidence for functional α2-adrenoceptors on vascular sympathetic nerve endings in the human forearm. Circ Res 69:887–897

    Google Scholar 

  • Grossman E, Rea RF, Hoffman A, Goldstein DS (1991): Yohimbine increases sympathetic nerve activity and norepinephrine spillover in normal volunteers. Am J Physiol 260:R142–R147

    Google Scholar 

  • Guo GB, Schmid PG, Abboud FM (1986): Sites at which vasopressin facilitates the arterial baroreflexes in rabbits. Am J Physiol 251:H644–H655

    Google Scholar 

  • Guo GB, Sharabi FM, Abboud FM, Schmid PG (1982): Vasopressin augments baroreflex inhibition of lumbar sympathetic nerve activity in rabbits. Circulation 66(Suppl 2):34

    Google Scholar 

  • Guo GB, Thames MD, Abboud FM (1982): Differential baroreflex control of heart rate and vascular resistance in rabbits. Relative role of carotid, aortic, and cardiopulmonary baroreceptors. Circ Res 50:554–565

    Google Scholar 

  • Guo GB, Thames MD, Abboud FM (1983): Arterial baroreflexes in renal hypertensive rabbits: Selectivity and redundancy of baroreceptor influence on heart rate, vascular resistance, and lumbar sympathetic activity. Circ Res 53:223–234

    Google Scholar 

  • Gurtu S, Sinha JN, Bhargava KP (1982): Involvement of alpha-2-adrenoceptors of nucleus tractus solitarius in baroreflex mediated bradycardia. Naunyn-Schmiedeberg’s Arch Pharmacol 321:38–43

    Article  Google Scholar 

  • Guyenet PG (1980): The coeruleospinal noradrenergic neurons: Anatomical and electrophysiological studies in the rat. Brain Res 189:121–133

    Article  Google Scholar 

  • Guyenet PG, Cabot JB (1981): Inhibition of sympathetic preganglionic neurons by catecholamines and Clonidine: mediation by an adrenergic receptor. J Neurosci 1:908–917

    Google Scholar 

  • Guyenet PG, Filtz TM, Donaldson SR (1987): Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Res 407:272–284

    Article  Google Scholar 

  • Guyenet PG, Stronetta RL (1982): Inhibition of sympathetic preganglionic discharges by epinephrine and α-methylepinephrine. Brain Res 235:271–283

    Article  Google Scholar 

  • Guyenet PG, Young BS (1987): Projections of nucleus paragigantocellularis to locus coeruleus and other structures in rat. Brain Res 406:171–184

    Article  Google Scholar 

  • Haeusler G (1973): Activation of central pathway of the baroreceptor reflex, a possible mechanism of the hypotensive action of Clonidine. Naunyn-Schmiedeberg’s Arch Pharmacol 278:231–246

    Article  Google Scholar 

  • Haeusler G (1974): Clonidine-induce inhibition of sympathetic nerve activity: No indication of a central presynaptic or an indirect sympathomimetic mode of action. Naunyn-Schmniedeberg’s Arch Pharmacol 286:97–111

    Article  Google Scholar 

  • Halliday GM, Li YW, Joh TH, et al. (1988) Distribution of monoamine-synthesizing neurons in the human medulla oblongata. J Comp Neurol 273:301–317

    Article  Google Scholar 

  • Harfstrand A, Fuxe K, Cintra A, et al. (1986): Glucocorticoid receptor immunoreactivity in monoaminergic neurons of rat brain. Proc Natl Acad Sci USA 83:9779–9783

    Article  Google Scholar 

  • Harland D, Gardiner SM, Bennett T (1988): Cardiovascular and dipsogenic effects of angiotensin II administered i. c. v. in Long Evans and Brattleboro rats. Brain Res 455:58–64

    Article  Google Scholar 

  • Haselton JR, Guyenet PG (1989): Electrophysiological characteristics of putative C1 adrenergic neurons in the rat. Neuroscience 30:199–214

    Article  Google Scholar 

  • Hasser EM, DiCarlo SE, Applegate RJ, Bishop VS (1988): Osmotically released vasopressin augments cardiopulmonary reflex inhibition of the circulation. Am J Physiol 254:R815–R820

    Google Scholar 

  • Hasser EM, Nelson DO, Haywood JR, Bishop VS (1987): Inhibition of renal sympathetic nervous activity by area postrema stimulation in rabbits. Am J Physiol 253:H91–H99

    Google Scholar 

  • Head GA (1991): Cardiovascular functions of central noradrenergic neurons in rabbits. Clin Exp Pharmacol Physiol 18:51–54

    Article  Google Scholar 

  • Heal DJ (1990): The effects of drugs on behavioural models of central noradrenergic function. In: The pharmacology of noradrenaline in the central nervous system. Heal DJ, Marsden CA, eds. New York: Oxford University Press

    Google Scholar 

  • Heilman KM, Schwartz HD, Watson RT (1978): Hypoarousal in patients with the neglect syndrome and emotional indifference. Neurology 28:229–232

    Google Scholar 

  • Heike CJ, O’Donohue TL, Jacobowitz DM (1980): Substance P as a baro-and chemoreceptor afferent neurotransmitter: Immunocytochemical and neurochemical evidence in the rat. Peptides 1:1–9

    Google Scholar 

  • Herbert H, Moga MM, Saper CB (1990): Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293:540–580

    Article  Google Scholar 

  • Herbert H, Saper CB (1990): Cholecystokinin-, galanin-, and corticotropin-releasing factor-like immunoreactive projections from the nucleus of the solitary tract to the parabrachial nucleus in the rat. J Comp Neurol 293:581–598

    Article  Google Scholar 

  • Hering HE (1927): Die Karotissinusreflexe auf Herz und Gefasse. Dresden: Steinkopff

    Google Scholar 

  • Hess WR (1949): Das Zwischenhirn. Basel: B. Schwabe

    Google Scholar 

  • Hillhouse EW, Milton NG (1989): Effect of noradrenaline and gamma-aminobutyric acid on the secretion of corticotropin-releasing factor-41 and arginine vasopressin from the rat hypothalamus in vitro. J Endocrinol 122:719–723

    Article  Google Scholar 

  • Hilton SM (1965): Hypothalamic control of the cardiovascular responses in fear and rage. Sci Basis Med Annu Rev 217–238

    Google Scholar 

  • Hilton SM (1975): Ways of viewing the central nervous control of the circulation—old and new. Brain Res 66:235–251

    Google Scholar 

  • Hilton SM (1963): Inhibition of baroreceptor reflexes on hypothalamic stimulation. J Physiol 165:56P–57P

    Google Scholar 

  • Hilton SM, Smith PR (1984): Ventral medullary neurones excited from the hypothalamic and midbrain defense areas. J Auton Nerv Sys 11:35–42

    Article  Google Scholar 

  • Hilton SM, Zbrozyna AW (1963): Amygdaloid region for defence reactions and its efferent pathway to the brain stem. J Physiol 165:160–173

    Google Scholar 

  • Hokfelt T, Fuxe K, Goldstein M, Johansson O (1974): Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66:235–251

    Article  Google Scholar 

  • Hokfelt T, Lundberg JM, Tatemoto K, et al. (1983): Neuropeptide Y (NPY)-and FMRFamide neuropeptide-like immunoreactivities in catecholamine neurons of the rat medulla oblongata. Acta Physiol Scand 117:315–318

    Article  Google Scholar 

  • Holets VR (1990): The anatomy and function of noradrenaline in the mammalian brains. In: The Pharmacology of Noradrenaline in the Central Nervous System, Heal DJ, Marsden CA, eds. New York: Oxford University Press

    Google Scholar 

  • Hossmann V, Maling TJ, Hamilton CA, Reid JL, Dollery CT (1980): Sedative and cardiovascular effects of Clonidine and nitrazepam. Clin Pharmacol Ther 28:167–176

    Article  Google Scholar 

  • Howe PRC (1985): Blood pressure control by neurotransmitters in the medulla oblongata and spinal cord. J Auton Nerv Sys 12:95–115

    Article  Google Scholar 

  • Howe PRC, Rogers PF, Morris MJ, Chalmers JP, Smith RM (1986): Plasma catecholamines and neuropeptide-Y as indicates of sympathetic nerve activity in normotensive and stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol 8:1113–1121

    Article  Google Scholar 

  • Huchet A-M, Chelly J, Schmitt H (1982): Role of alpha 1-and alpha 2-adrenoceptors in the modulation of the baroreflex vagal bradycardia. Eur J Pharmacol 71:455–461

    Article  Google Scholar 

  • Huchet A-M, Huguet F, Ostermann G, Bakri-Logeais F, Schmitt H, Narcisse G (1983): Central α1-adrenoceptors and cardiovascular control in normotensive and spontaneously hypertensive rats. Eur J Pharmacol 95:207–213

    Article  Google Scholar 

  • Humphrey SJ, McCall RB (1984): Evidence that L-glutamic acid mediates baroreceptor function in the cat. Clin Exp Hypertens 6:1311–1329

    Article  Google Scholar 

  • Imaizumi T, Granata AR, Benarroch EE, Sved AF, Reis DJ (1985): Contributions of arginine vasopressin and the sympathetic nervous system to the fulminating hypertension after destruction of neurons of caudal ventrolateral medulla of the rat. J Hypertens 3:491–501

    Article  Google Scholar 

  • Imaizumi T, Takeshita A, Higashi H, Nakamura M (1987): Alpha-ANP alters reflex control of lumbar and renal sympathetic nerve activity and heart rate. Am J Physiol 253:H1136–H1140

    Google Scholar 

  • Imaizumi T, Thames MD (1986): Influence of intravenous and intracerebroventricular vasopressin on baroreflex control of renal nerve traffic. Circ Res 58:17–25

    Google Scholar 

  • Iovino M, Vanacore A, Steardo L (1990): Alpha2-adrenergic stimulation within the nucleus tractus solitarius attenuates vasopressin release induced by depletion of cardiovascular volume. Pharmacol Biochem Behav 37:821–824

    Article  Google Scholar 

  • Iversen LL (1967): The Uptake and Storage of Noradrenaline in Sympathetic Nerves. Cambridge: Cambridge University Press

    Google Scholar 

  • Iversen LL (1973): Catecholamine uptake processes. Br Med Bull 29:130–135

    Google Scholar 

  • Iversen LL, Rossor MN, Reynolds GP, et al. (1983): Loss of pigmented dopamine-beta-hydroxylase positive cells from locus coeruleus in senile dementia of Alzheimer’s type. Neurosci Lett 39:95–100

    Article  Google Scholar 

  • Iwata J, LeDoux JE, Meeley MP, Arneric S, Reis DJ (1986): Intrinsic neurons in the amygdaloid field projected to by the medical geniculate body mediate emotional responses conditioned to acoustic stimuli. Brain Res 383:195–214

    Article  Google Scholar 

  • Iwata J, LeDoux JE, Reis DJ (1986): Destruction of intrinsic neurons in the lateral hypothalamus disrupts the classical conditioning of autonomic but not behavioral emotional responses in the rat. Brain Res 368:161–166

    Article  Google Scholar 

  • Jacobowitz DM, Skofitsch G, Keiser HR, Eskay RL, Zamir N (1985): Evidence for the exitence of atrial natriuretic factor-containing neurons in the rat brain. Neuroendocrinology 40:92–94

    Article  Google Scholar 

  • Jacobs BL (1987): Brain monoaminergic unit activity in behaving animals. Prof Psychol Physiol Psychiatr 12:171–206

    Google Scholar 

  • Jacobs BL (1990): Locus coeruleus neuronal activity in behaving animals. In: The Pharmacology of Noradrenaline in the Central Nervous System, Heal DJ, Marsden CA, eds. New York: Oxford University Press

    Google Scholar 

  • Jarrott B (1991): Changes in central catecholaminergic neurons in cardiovascular diseases. In: Catecholamines and Heart Disease, Ganguly PK, ed. Boca Raton: CRC Press

    Google Scholar 

  • Jarrott B, Iversen LL (1971): Noradrenaline metabolizing enzymes in normal and sympathetically denervated vas deferens. J Neurochem 18:1–6

    Article  Google Scholar 

  • Jhanwar-Uniyal M, Levin BE, Leibowitz SF (1985): Clonidine effects on catecholamine levels and turnover in discrete hypothalamic and extra-hypothalamic areas. Brain Res 337:109–116

    Article  Google Scholar 

  • Joanny P, Steinberg J, Zamora AJ, Conte-Devolx B, Millet Y, Oliver C (1989): Corticotropin-releasing factor release from in vitro superfused and incubated rat hypothalamus. Effect of potassium, norepinephrine, and dopamine. Peptides 10:903–911

    Article  Google Scholar 

  • Jones CR, Hoyer D, Palacios JM (1990): Adrenoceptor autoradiography. In: The Pharmacology of Noradrenaline in the Central Nervous System, Heal DJ, Marsden CA, eds. New York: Oxford University Press

    Google Scholar 

  • Jones SL, Gebhart GF (1986): Characterization of coeruleospinal inhibition of the nociceptive tail-flick reflex in the rat: Mediation by spinal alpha2-adrenoceptors. Brain Res 364:315–330

    Article  Google Scholar 

  • Jouvet M (1972): The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol 64:166–307

    Google Scholar 

  • Kalen P, Kokaia M, Lindvall O, Bjorklund A (1988): Basic characteristics of noradrenaline release in the hippocampus of intact and 6-hydroxydopamine lesioned rats as studied by in vivo microdialysis. Brain Res 474:374–379

    Article  Google Scholar 

  • Kalia M (1981): Brain stem localization of vagal preganglionic neurons. J Auton Nerv Sys 3:451–481

    Article  Google Scholar 

  • Kalia M, Fuxe K, Goldstein M (1985a): Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes. J Comp Neurol 233:308–332

    Article  Google Scholar 

  • Kalia M, Fuxe K, Goldstein M (1985b): Rat medulla oblongata. III. Adrenergic (C1 and C2) neurons, nerve fibers and presumptive terminal processes. J Comp Neurol 233:333–349

    Article  Google Scholar 

  • Kannan H, Hayashida Y, Yamashita H (1989): Increase in sympathetic outflow by paraventricular nucleus stimulation in awake rats. Am J Physiol 256:R1325–R1330

    Google Scholar 

  • Kapp BS, Markgraf CG, Schwaber JS, Bilyk-Spafford T (1989): The organization of dorsal medullary projections to the central amygdaloid nucleus and parabrachial nuclei in the rabbit. Neuroscience 30:717–732

    Article  Google Scholar 

  • Kendrick KM, Leng G (1987): Haemorrhage-induced release of noradrenaline, 5-hydroxytryptamine and uric acid in the supraoptic nucleus of the rat measured by microdialysis. Brain Res 440:402–406

    Article  Google Scholar 

  • Kennedy B, Janowsky DS, Risch SC, Ziegler MG (1984): Central cholinergic stimulation causes adrenal epinephrine release. J Clin Invest 74:972–975

    Article  Google Scholar 

  • Kety SS (1970): The biogenic amines in the central nervous system: Their possible roles in arousal, emotion and learning. In: The Neurosciences, Schmitt FO, ed. New York: Rockefeller University Press

    Google Scholar 

  • King KA, Mackie G, Pang CCY, Wall RA (1985): Central vasopressin in the modulation of catecholamine release in conscious rats. Can J Physiol Pharmacol 63:1501–1505

    Article  Google Scholar 

  • Kluver H, Bucy P (1939): Preliminary analysis of functions of the temporal lobes in monkeys. Arch Neurol Psychiatry 42:979–100

    Google Scholar 

  • Kom SJ, McCarthy KD (1981): Modulation of cyclic AMP accumulation by α2-adrenergic receptors in astroglial cell cultures. Fed Proc 40:145

    Google Scholar 

  • Korner PI, Angus JA (1982): Central nervous control of blood pressure in relation to antihypertensive drug treatment. In: Antihypertensive Drugs, Austin DE, eds. New York: Pergamon Press

    Google Scholar 

  • Kvetnansky R, Dobrakovova M, Jezova D, Oprsalova Z, Lichardus B, Makara G (1989): Hypothalamic regulation of plasma catecholamine levels during stress: Effect of vasopressin and CRF. In: Stress. Neurochemical and Humoral Mechanisms, Van Loon GR, Kvetnansky R, McCarty R, Axelrod J, eds. New York: Gordon and Breach Science Publishers

    Google Scholar 

  • Kvetnansky R, Mikulaj L (1970): Adrenal and urinary catecholamines in rat during adaptation to repeated immobilization stress. Endocrinology 87:738–743

    Article  Google Scholar 

  • Kvetnansky R, Weise VK, Gewirtz GP, Kopin IJ (1971): Synthesis of adrenal catecholamines in rats during and after immobilizatin stress. Endocrinology 89:46–49

    Article  Google Scholar 

  • Lacey JI (1967): Somatic response patterning and stress: Some revisions of activation theory. In: Psychological Stress, Appley MH, Trumble R, eds. New York: Appleton-Century-Crofts

    Google Scholar 

  • Lacey JI, Lacey BC (1958): Verification and extension of the principle of autonomic response-sterotypy. Am J Psychol 71:50–73

    Article  Google Scholar 

  • Lacey JI, Lacey BC (1970): Some autonomic-central nervous system interrelationships. In: Physiological Correlates of Emotion, Black P, ed. New York: Academic Press

    Google Scholar 

  • Langer SZ (1981): Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32:337–362

    Google Scholar 

  • Langer SZ, Lehmann J (1989): Presynaptic receptors on catecholamine neurones. In: Catecholamines II, Trendelenburg U, Weiner N, eds. New York: Springer-Verlag

    Google Scholar 

  • Langer SZ, Massingham R, Shepperson NB (1980): Presence of post-synaptic alpha 2-adrenoceptors of predominantly extrasynaptic location in the vascular smooth muscle of the dog hind-limb. Clin Sci 59:225s–228s

    Google Scholar 

  • Leone C, Gordon FJ (1989): Is L-glutamate a neurotransmitter of baroreceptor information in the nucleus of the tractus solitarius? J Pharmacol Exp Ther 250:953–962

    Google Scholar 

  • Levitt P, Moore RY (1979): Origin and organization of brainstem catecholamine innervation in the rat. J Comp Neurol 186:505–528

    Article  Google Scholar 

  • Lewis SJ, Verbeme AJ, Robinson TG, Jarrott B, Louis WJ, Beart PM (1989): Excitotoxin-induced lesions of the central but not basolateral nucleus of the amygdala modulate the baroreceptor heart rate reflex in conscious rats. Brain Res 494:232–240

    Article  Google Scholar 

  • Li P, Lovick TA (1985): Excitatory projections from hypothalamic and midbrain defense regions to nucleus paragigantocellularis lateralis in the rat. Exp Neurol 1985; 89:543–553

    Article  Google Scholar 

  • Li PP, Warsh JJ, Godse DD (1983): Rat brain norepinephrine metabolism: Substantial clearance through 3,4-dihydroxyphenylethyleneglycol formation. J Neurochem 41:1065–1071

    Article  Google Scholar 

  • Li YW, Halliday GM, Joh TH, Geffen LB, Blessing WW (1988): Tyrosine hydroxylase-containing neurons in the supraoptic and paraventricular nuclei of the adult human. Brain Res 461:75–86

    Article  Google Scholar 

  • Lindvall O, Bjorklund A (1974): The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand Suppl 412:1–48

    Google Scholar 

  • Loewy AD, Marson L, Parkiknson D, Perry MA, Sawyer WB (1986): Descending noradrenergic pathways involved in the A5 depressor response. Brain Res 386:313–324

    Article  Google Scholar 

  • Loewy AD, McKellar S, Saper CB (1979): Direct projections from the A5 catecholamine cell group to the intermediolateral cell column. Brain Res 174:309–314

    Article  Google Scholar 

  • Machado BH, Brody MJ (1990): Mechanisms of pressor response produced by stimulation of nucleus ambiguus. Am J Physiol 259:R955–R962

    Google Scholar 

  • MacLean PD (1955): The limbic system (“visceral brain”) and emotional behavior. Arch Neurol Psychiatry 73:130–134

    Google Scholar 

  • MacLean PD (1970): The triune brain, emotion and scientific bias. In: The Neurosciences, Second Study Program, Schmitt FO, ed. New York: Rockefeller University Press

    Google Scholar 

  • Mangiapane ML, Brody MJ (1986): Mechanisms of hemodynamic responses to electrical stimulation of subfornical organ. Am J Physiol 250:R1117–R1122

    Google Scholar 

  • Mangiapane ML, Brody MJ (1987): Vasoconstrictor and vasodilator sites within anteroventral third ventricle region. Am J Physiol 253:R827–R831

    Google Scholar 

  • Marsden CA (1990): A critical assessment of methods for monitoring noradrenaline release in vivo. In: The Pharmacology of Noradrenaline in the Central Nervous System, Heal DJ, Marsden CA, eds. New York: Oxford University Press

    Google Scholar 

  • Marson L, Kiritsy-Roy JA, Bobbitt FA, Van Loon GR (1989): Cardiovascular and sympathoadrenal responses to intracerebral opioid peptides: Receptor specific effects at rest and during stress. In: Stress. Neurochemical and Humoral Mechanisms, Van Loon GR, Kvetnansky R, McCarty R, Axelrod J, eds. New York: Gordon and Breach Science Publishers

    Google Scholar 

  • Martin SM, Malkinson TJ, Bauce LG, Veale WL, Pittman QJ (1988): Plasma catecholamines in conscious rabbits after central administration of vasopressin. Brain Res 457:192–195

    Article  Google Scholar 

  • Mason ST (1984): Catecholamines and Behaviour. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Mason ST, Angel A (1983): Anaesthesia: The role of adrenergic mechanisms. Eur J Pharmacol 91:29–39

    Article  Google Scholar 

  • Mason ST, Corcoran ME (1979): Catecholamines and convulsions. Brain Res 170:497–507

    Article  Google Scholar 

  • Mason ST, Iversen SD (1977): Effects of selective forebrain noradrenaline loss on behavioural inhibition in the rat. J Physiol Psychol 91:165–173

    Article  Google Scholar 

  • Mason ST, Iversen SD (1979): Theories of the dorsal bundle extenction effect. Brain Res Rev 1:107–137

    Article  Google Scholar 

  • Mattila J, Bunag RD (1986): Sympathomimetic pressor responses to thyrotropin-releasing hormone in rats. Am J Physiol 251:H86–H92

    Google Scholar 

  • McAllen RM (1986): Identification and properties of sub-retrofacial bulbospinal neurones: A descending cardiovascular pathway. J Auton Nerv Sys 17:151–164

    Article  Google Scholar 

  • McAllen RM, Neil JJ, Loewy AD (1982): Effects of kainic acid applied to the ventral surface of the medulla oblongata on vasomotor tone, the baroreceptor reflex and hypothalamic autonomic responses. Brain Res 238:65–76

    Article  Google Scholar 

  • McCall RB (1988): GABA-mediated inhibition of sympthoexcitatory neurons by midline medullary stimulation. Am J Physiol 255:R605–R615

    Google Scholar 

  • McCall RB (1990): Central neurotransmitters involved in cardiovascular regulation. In: Cardiovascular Pharmacology, Antonaccio MJ, ed. New York: Raven Press

    Google Scholar 

  • McCall RB, Humphrey SJ (1981): Evidence for a central depressor action of postsynaptic α1-adrenergic receptor antagonists. J Auton Nerv Sys 3:9–23

    Article  Google Scholar 

  • McCall RB, Schuette MR, Humphrey SJ, Lahti RA, Barsuhn C (1983): Evidence for a central sympathoexcitatory action of alpha-2 adrenergic antagonists. J Pharmacol Exp Ther 224:501–507

    Google Scholar 

  • McCubbin JW, Kaneko Y, Page IH (1960): Ability of serotonin and norepinephrine to mimic the central effects of reserpine on vasomotor activity. Circ Res 8:849–858

    Google Scholar 

  • McKellar S, Loewy AD (1982): Efferent projections of the A1 catecholamine group in the rat: An autoradiographic study. Brain Res 241:11–29

    Article  Google Scholar 

  • McMillen BA, Wamack W, German DC, Shore SA (1980): Effects of chronic desipramine treatment on rat brain noradrenergic responses to α-adrenergic drugs. Eur J Pharmacol 61:239–246

    Article  Google Scholar 

  • Meeley MP, Ernsberger PR, Granata AR, Reis DJ (1986): An endogenous clonidine-displacing substance from bovine brain: Receptor binding and hypotensive actions in the ventrolateral medulla. Life Sci 38:1119–1126

    Article  Google Scholar 

  • Michel MC, Brodde O-E, Schnepel B, Behrendt J, Tschada R, Motulsky HJ, Insel PA (1989): [3H]Idazoxan and some other α2-adrenergic drugs also bind with high affinity to a nonadrenergic site. Mol Pharmacol 35:324–330

    Google Scholar 

  • Michel MC, Regan JW, Gerhardt MA, Neubig RR, Insel PA, Motulsky HJ (1990): Nonadrenergic [3H]lidazoxan binding sites are physically distinct from α2-adrenergic receptors. Mol Pharmacol 37:65–68

    Google Scholar 

  • Mifflin SW, Felder RB (1990): Synaptic mechanisms regulating cardiovascular afferent inputs to solitary tract nucleus. Am J Physiol 259:H653–H661

    Google Scholar 

  • Mills E, Wang SC (1964): Liberation of antidiuretic hormone: Location of ascending pathways. Am J Physiol 207:1399–1404

    Google Scholar 

  • Minneman KP, Hegstrand LR, Molinoff PB (1979): Simultaneous determination of beta1and beta2 adrenergic receptors in tissues containing both receptor subtypes. Mol Pharmacol 16:34–46

    Google Scholar 

  • Minneman KP, Pittman RN, Molinoff PB (1981): Beta-adrenergic receptor subtypes: Properties, distribution and regulation. Annu Rev Neurosci 4:419–461

    Article  Google Scholar 

  • Minson J, Chalmers J, Kapoor V, Cain M, Caon A (1986): Relative importance of sympathetic nerves and of circulating adrenaline and vasopressin in mediating hypertension after lesions of the caudal ventrolateral medulla in the rat. J Hypertens 4:273–281

    Article  Google Scholar 

  • Miura M, Reis DJ (1969): Termination and secondary projections of carotid sinus nerve in the cat brainstem. Am J Physiol 217:142–153

    Google Scholar 

  • Morilak DA, Fornal C, Jacobs BL (1987): Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. II Cardiovascular challenge. Brain Res 422:24–31

    Article  Google Scholar 

  • Morris M, Salom P, Steinberg H, et al. (1990): Endogenous opioids modulate the cardiovascular response to mental stress. Psychoneuroendocrinology 15:185–192

    Article  Google Scholar 

  • Morrison SF, Gebber GL (1984): Raphe neurons with sympathetic-related activity: Baroreceptor responses and spinal connections. Am J Physiol 246:R338–R348

    Google Scholar 

  • Nakata T, Berard W, Kogosov E, Alexander N (1991): Hypothalamic NE release and cardiovascular response to NaCl in sinoaortic-denervated rats. Am J Physiol 260:R733–R738

    Google Scholar 

  • Narabayashi H, Nagao T, Saito Y, Yoshida M, Nagahata M (1963): Stereotaxic amygdalotomy for behavior disorders. Arch Neurol 9:1–16

    Article  Google Scholar 

  • Nathan MA, Reis DJ (1977): Chronic labile hypertension produced by lesions of the nucleus tractus solitarii in the cat. Circ Res 40:72–81

    Google Scholar 

  • Nathan MA, Reis DJ (1981): Fulminating arterial hypertension elicited either by lesions or by electrical stimulation of the rostral hypothalamus in the rat. Brain Res 211:91

    Article  Google Scholar 

  • Nauta WJH, Kuypers HGJM (1958): Some ascending pathways in the brain stem reticular formation. In: Reticular Formation of the Brain, Jasper JJ, Proctor LD, Knighton RS, Noshay WC, Costello RT, eds. Boston: Little, Brown

    Google Scholar 

  • Nestler EJ, McMahon A, Sabban EL, Tallman JF, Duman RS (1990): Chronic antidepressant administration decreases the expression of tyrosine hydroxylase in the rat locus coeruleus. Proc Natl Acad Sci 87:7522–7526

    Article  Google Scholar 

  • Niehoff DL, Kuhar MJ (1983): Benzodiazepine receptors: Localization in rat amygdala. J Neurosci 3:2091–2097

    Google Scholar 

  • Ninan PT, Insel TM, Cohen RM, Cook JM, Skolnick P, Paul SM (1982): Benzodiazepine receptor-mediated experimental “anxiety” in primates. Science 218:1332–1334

    Article  Google Scholar 

  • Olschowka JA, Molliver ME, Grzanna R, Rice FL, Coyle JT (1981): Ultrastructural demonstration of noradrenergic synapses in the rat central nervous system by dopam-ine-β-hydroxylase immunocytochemistry. J Histochem Cytochem 29:271–280

    Article  Google Scholar 

  • Owsjannikow P (1871): Die tonischen und reflectorischen Centren der Gefassnerven. Sachs Akad Wiss Sitz 23:135–147

    Google Scholar 

  • Pacak K, Armando I, Kvetnansky R, Palkovits M, Goldstein DS, Kopin IJ (in press): Stress-induced changes in norepinephrine, dihydroxyphenylglycol and 3,4-dihydroxyphenylacetic acid in the hypothalamic paraventricular nucleus of conscious rats. In: Stress: Neuroendocrine and Molecular Approaches, Kvetnansky R, McCarty R, Axelrod J, eds. New York: Gordon and Breach Science Publishers

    Google Scholar 

  • Palkovits M, Brownstein MJ (1989): Catecholamines in the central nervous system. In: Catecholamines II, Trendelenburg U, Weiner N, eds. New York: Springer-Verlag

    Google Scholar 

  • Papez JW (1937): A proposed mechanism of emotion. Arch Neurol Psychiatry 38:725–743

    Google Scholar 

  • Pavlov IP (1887): Uber centrifugalen Nerven des Herzens. Arch Physiologie (Leipzig) 498–569

    Google Scholar 

  • Pazos A, Gonzalez AM, Pascual J, Mean JJ, Barturen F, Garcia-Sevilla JA (1988): Alpha 2-adrenoceptors in human forebrain: Autoradiographic visualization and biochemical parameters using the agonist [3H]UK-14304. Brain Res 475:361–365

    Article  Google Scholar 

  • Pettibone DJ, Mueller GP (1981): α-adrenergic stimulation by Clonidine increases plasma concentrations of immunoreactive β-endorphin in rats. Endocrinology 109:798–802

    Article  Google Scholar 

  • Pieribone VA, Aston-Jones G, Bohn MC (1988): Adrenergic and non-adrenergic neurons in the C1 and C3 areas project to locus coeruleus: A fluorescent double labeling study. Neurosci Lett 85:297–303

    Article  Google Scholar 

  • Pitts DK, Marwah J (1987): Cocaine modulation of central monoaminergic neurotransmission. Pharmacol Biochem Behav 26:453–461

    Article  Google Scholar 

  • Plotsky PM, Bruhn TO, Vale W (1985): Hypophysiotropic regulation of adrenocorticotropin secretion in response to insulin-induced hypoglycemia. Endocrinology 117:323–329

    Article  Google Scholar 

  • Pool JL (1954): Neurophysiological symposium; visceral brain of man. J Neurosurg 11:45–63

    Article  Google Scholar 

  • Porter JP, Brody MJ (1958): Neural projections from paraventricular nucleus that subserve vasomotor functions. Am J Physiol 248:R271–R281

    Google Scholar 

  • Porter JP, Brody MJ (1986a): Spinal vasopressin mechanisms of cardiovascular regulation. Am J Physiol 251:R510–517

    Google Scholar 

  • Porter JP, Brody MJ (1986b): A comparison of the hemodynamic effects produced by electrical stimulation of subnuclei of the paraventricular nucleus. Brain Res 375:20–29

    Article  Google Scholar 

  • Powers RE, Struble RG, Casanova MF, O’Connor DT, Kitt CA, Price DL (1988): Innervation of human hippocampus by noradrenergic systems: Normal anatomy and structural abnormalities in aging and in Alzheimer’s disease. Neuroscience 25:401–417

    Article  Google Scholar 

  • Probst A, Cortex R, Palacios JM (1985): Distribution of α2-adrenergic receptors in the human brainstem: An autoradiographic study using [3H]p-aminoclonidine. Eur J Pharmacol 106:477–488

    Article  Google Scholar 

  • Rainbow TC, Biegon A (1983): Quantitative autoradiography of [3H]prazosin binding sites in rat forebrain. Neurosci Lett 40:221–226

    Article  Google Scholar 

  • Rainbow TC, Parsons B, Wolfe BB (1984): Quantitative autoradiography of beta 1-and beta 2-adrenergic receptors in rat brain. Proc Nat Acad Sci USA 81:1585–1589

    Article  Google Scholar 

  • Ranson SW, Billingsley PR (1916): Vasomotor reactions from stimulation of the floor of the fourth ventricle. Am J Physiol 41:85–90

    Google Scholar 

  • Rao DD, McKelvy J, Kebabian J, MacKenzie RG (1990): Two forms of the reat D2 dopamine receptor as revealed by the polymerase chain reaction. FEBS Lett 263:18–22

    Article  Google Scholar 

  • Rasmussen K, Jacobs BL (1986): Single unit activity of locus coeruleus neurons in the freely moving cat. II. Conditioning and pharmacologic studies. Brain Res 23:335–344

    Article  Google Scholar 

  • Rasmussen K, Morilak DA, Jacobs BL (1986): Single unit activity of locus coeruleus neurons in the freely moving cat. I. During naturalistic behaviors and in response to simple and complex stimuli. Brain Res 371:324–334

    Article  Google Scholar 

  • Rasmussen S, Heese B, Bonde-Petersen F, Damkjaer NM, Christensen NJ, Giese J, Warberg J (1986): Haemodynamic and humoral effects of lower body negative pressure in normal, sodium-replete man during angiotensin-converting enzyme inhibition with Captopril. Scand J Clin Lab Invest 46:81–88

    Article  Google Scholar 

  • Redmond DE Jr, Huang YH (1979): New evidence for a locus coeruleus-norepinephrine connection with anxiety. Life Sci 25:2149–2162

    Article  Google Scholar 

  • Redmond DE Jr, Huang YH, Snyder DR, Maas JW (1976): Behavioral effects of stimulation of the locus coeruleus in the stump tail monkey (Macaca arctoides). Brain Res 116:502–510

    Article  Google Scholar 

  • Reid JL, Wing LMH, Mathias CJ, Frankel HL, Neill E (1977): The central hypotensive effect of Clonidine. Studies in tetraplegic subjects. Clin Pharmacol Ther 21:375–381

    Google Scholar 

  • Reis DJ, Granata AR, Joh TH, Ross CA, Ruggiero DA, Park DH (1984): Brain stem catecholamine mechanisms in tonic and reflex control of blood pressure. Hypertension 6(5 Pt 2):II7–II15

    Google Scholar 

  • Reis DJ, Gunne L-M (1965): Braincatecholamines: Relation to the defense reaction evoked by brain stimulation in the cat. Science 156:1768–1770

    Article  Google Scholar 

  • Reis DJ, Ledoux JE (1987): Some central neural mechanisms governing resting and behaviorally coupled control of blood pressure. Circulation 76(Suppl I):I2–I9

    Google Scholar 

  • Reis DJ, Morrison S, Ruggiero DA (1988): The C1 area of the brainstem in tonic and reflex control of blood pressure. State of the art lecture. Hypertension 11(Suppl I):I–8–I–13

    Google Scholar 

  • Riche D, De Pommery J, Menetrey D (1990): Neuropeptides and catecholamines in efferent projections of the nuclei of the solitary tract in the rat. J Comp Neurol 293:399–424

    Article  Google Scholar 

  • Richet G, Wahbe F, Hagege J, Wiemeyer W (1987): Extraneuronal production of dopamine by kidney slices in normo and hypertensive rats. Clin Exp Hypertens 9(Suppl 1):127–134

    Article  Google Scholar 

  • Rockhold RW, Acuff CG, Clower BR (1990): Excitotoxic lesions of the paraventricular hypothalamus: metabolic and cardiac effects. Neuropharmacology 29:663–673

    Article  Google Scholar 

  • Rogers PF, Head GA, Lungershausen YK, Howe PRC (1991): Effects of depleting central and peripheral adrenaline stores on blood pressure in stroke-prone spontaneously hypertensive rats. J Auton Nerv Sys 34:9–16

    Article  Google Scholar 

  • Ross CA, Ruggiero DA, Joh TH, Park DH, Reis DJ (1984a): Rostral ventrolateral medulla: selective projections to the thoracic autonomic cell columns from the region containing C1 adrenaline neurons. J Comp Neurol 228:168–185

    Article  Google Scholar 

  • Ross CA, Ruggiero DA, Park DH, et al. (1984b): Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci 4:474–494

    Google Scholar 

  • Ross CA, Ruggiero DA, Reis DJ (1985): Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol 242:511–534

    Article  Google Scholar 

  • Routledge C, Marsden CA (1987): Electrical stimulation of the C1 region of the rostral ventrolateral medulla of the rat increases mean arterial pressure and adrenaline release in the posterior hypothalamus. Neuroscience 20:457–466

    Article  Google Scholar 

  • Roy A, Pickar D, Linnoila M, Chrousos GP, Gold PW (1987): Cerebrospinal fluid corticotropin-releasing hormone in depression: relationship to noradrenergic function. Psychiatry Res 20:229–237

    Article  Google Scholar 

  • Sakai K, Yoshimoto Y, Luppi PH, Fort P, el Mansari M, Jouvet M (1990): Lower brainstem afferents to the cat posterior hypothalamus: A double labeling study. Brain Res Bull 24:437–455

    Article  Google Scholar 

  • Sanford SC (1990): Central adrenoceptors in response to adaptation to stress. In: The Pharmacology of Noradrenaline in the Central Nervous System, Heal DJ, Marsden CA, eds. New York: Oxford University Press

    Google Scholar 

  • Sangdee C, Franz DN (1983): Evidence for inhibition of sympathetic pregnaglionic neurons by bulbospinal epinephrine pathways. Neurosci Lett 37:167–173

    Article  Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1976): The efferent connections of the ventrolmedial nucleus of the hypothalamus of the rat. J Comp Neurol 169:409–442

    Article  Google Scholar 

  • Sawchenko PE (1991): A tale of three peptides: Corticotropin-releasing factor-, oxytocin-, and vasopressin-containing pathways mediating integrated hypothalamic responses to stress. In: Stress, Neuropeptides, and Systemic Disease, McCubbin JW, Kaufman PG, Nemeroff CB, eds. New York: Academic Press

    Google Scholar 

  • Sawchenko PE, Swanson LW (1981a): Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science 214:685–687

    Article  Google Scholar 

  • Sawchenko PE, Swanson LW (1981b): Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 196:271–285

    Article  Google Scholar 

  • Sawchenko PE, Swanson LW (1982): The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res 4:275–325

    Google Scholar 

  • Schwaber JS, Kapp BS, Higgins G (1980): The origin and extent of direct amygdala projections to the region of the dorsal motor nucleus of the vagus and the nucleus of the solitary tract. Neurosci Lett 20:15–20

    Article  Google Scholar 

  • Segal M, Bloom FE (1976): The action of norepinephrine in the rat hippocampus. Brain Res 107:499–525

    Article  Google Scholar 

  • Seligman MEP, Maier SF (1967): Failure to escape traumatic shock. J Exp Psychol 74:1–9

    Article  Google Scholar 

  • Seller H, Illert M (1969): The localization of the first synapse in the carotid sinus baroreceptor reflex pathway and its alteration of the afferent input. PflĂĽgers Arch 306:1–19

    Article  Google Scholar 

  • Selye H (1936): A syndrome produced by diverse nocuous agents. Nature 138:32

    Article  Google Scholar 

  • Share NN, Melville KI (1963): Centrally mediated sympathetic cardiovascular responses induced by intraventricular norepinephrine. J Pharmacol Exp Ther 141:15–21

    Google Scholar 

  • Siciliano H (1900): Les effets de la compresion des carotides sur la pression, sur le coeur et sur la respiration. Arch Ital Biol 33:338–344

    Google Scholar 

  • Sigg EB, Sigg TD (1969): Hypothalamic stimulation of preganglionic autonomic activity and its modification by chlorpromazine, diazepam and pentobarbital. Int J Neuropharmac 8:567–572

    Article  Google Scholar 

  • Silverman AJ, Oldfield B, Hou-Yu A, Zimmerman EA (1985): The noradrenergic innervation of vasopressin neurons in the paraventricular nucleus of the hypothalamus: An ultrastructural study using radioautography and immunocytochemistry. Brain Res 325:215–219

    Article  Google Scholar 

  • Skinner JE (1985): Psychosocial stress and sudden cardiac death: Brain mechanisms. In: Stress and heart disease, Beamish RE, Singal PK, Dhalla NS, eds. Boston: Martinus Nijhoof

    Google Scholar 

  • Skinner JE, Reed JC (1981): Blockade of a frontocortical-brainstem pathway prevents ventricular fibrillation of the ischemic heart in pigs. Am J Physiol 240:H156–H163

    Google Scholar 

  • Smith OA, Astley CA, Chesney MA, Taylor DJ, Spelman FA (1986): Personality, stress and cardiovascular disease: Human and nonhuman primates. In: Neural mechanisms and cardiovascular disease, Lown B, Malliani A, Prosdocimi M, eds. New York: Springer-Verlag

    Google Scholar 

  • Smith OA, Astley CA, DeVito JL, Stein JM, Walsh KE (1980): Functional analysis of hypothalamic control of cardiovascular responses accompanying emotional behavior. Fed Proc 39:2487–2494

    Google Scholar 

  • Smith OA, DeVito JL (1984): Central neural integration for the control of autonomic responses associated with emotion. Annu Rev Neurosci 4:43–65

    Article  Google Scholar 

  • Smith OA, DeVito JL, Astley CA (1990): Neurons controlling cardiovascular responses to emotion are located in lateral hypothalamus-perfornical region. Am J Physiol 259:R943–R954

    Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990): Molecular cloning and charactersitics of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    Article  Google Scholar 

  • Somiya H, Tonoue T (1984): Neuropeptides as central integrators of autonomic nerve activity: Effects of TRH, SFIR, VIP and bombesin on gastric and adrenal nerves. Reg Pept 9:47–52

    Article  Google Scholar 

  • Somogyi P, Minson JB, Morilak D, Llewellyn-Smith IJ, McIlhinney JRA, Chalmers JP (1989): Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control. Brain Res 496:401–407

    Article  Google Scholar 

  • Stanford RC, Nutt DJ, Cowen PJ (1983): Comparison of the effects of chronic desmethylimipramine administration on α2 and β adrenoceptors in different regions of rat brain. Neuroscience 8:161–164

    Article  Google Scholar 

  • Steele MK, Gardner DG, Xie P, Schultz HD (1991): Interactions between ANP and ANG II in regulating blood pressure and sympathetic outflow. Am J Physiol 260:R1145–R1151

    Google Scholar 

  • Stepanovic SR, Nikolic J, Varagic VM, Jozanov O (1989): The effects of naloxone and atropine on the plasma catecholamine responses to eserine and to forced immobilization in rats. In: Stress. Neurochemical and Humoral Mechanisms, Van Loon GR, Kvetnansky R, McCarty R, Axelrod J, eds. New York: Gordon and Breach Science Publishers

    Google Scholar 

  • Stoddard SL, Bergdall VK, Townsend DW, Levin BE (1986): Plasma catecholamines associated with hypothalamically-elicited fight (escape) behavior in the freely moving cat. Physiol Behav 37:709–715

    Article  Google Scholar 

  • Stoddard SL, Wilson PE, Bergdall VK (1987): Sympathoadrenal activation related to feline aggression. Aggress Behav 13:296 (Abstract)

    Google Scholar 

  • Stoddard-Apter SL, Siegel A, Levin BE (1938): Plasma catecholamine and cardiovascular responses following hypothalamic stimulation in the awake cat. J Auton Nerv Sys 8:343–360

    Article  Google Scholar 

  • Strack AM, Sawyer WB, Hughes JH, Platt KB, Loewy AD (1989): A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal Pseudorabies viral infections. Brain Res 491:156–162

    Article  Google Scholar 

  • Strack AM, Sawyer WB, Platt KB, Loewy AD (1989): CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with Pseudorabies virus. Brain Res 491:274–296

    Article  Google Scholar 

  • Stricker EM, Zigmond MJ (1986): Brain monoamines, homeostasis, and adaptive behavior. In: The Nervous System. Section I. Handbook of Physiology, Bethesda, MD: Mountcastle VB, ed. American Physiological Society

    Google Scholar 

  • Struyker HAJ, van Rossum JM (1972): Clonidine-induced cardiovascular effects after stereotaxic application in the hypothalamus of rats. J Pharm Pharmacol 24:410–411

    Google Scholar 

  • Struyker Boudier HAJ, Smeets GW, Brouwer GM, van Rossum JM (1974): Hypothalamic alpha-adrenergic receptors in cardiovascular regulation. Neuropharmacology 13:837–846

    Article  Google Scholar 

  • Sugrue MF (1981): Effects of acutely and chronically administered antidepressants on the clonidine-induced decrease in rat brain 3-methoxy-4-hydroxyphenylethylene glycol sulphate content. Life Sci 28:377–384

    Article  Google Scholar 

  • Sun M-K, Guyenet PG (1987): Arterial baroreceptor and vagal inputs to sympathoexcitatory neurons in rat medulla. Am J Physiol 252:R699–R709

    Google Scholar 

  • Sun M-K, Guyenet PG (1990): Excitation of rostral medullary pacemaker neurons with putative sympathoexcitatory function by cyclic AMP and beta-adrenoceptor agonists “in vitro.” Brain Res 511:30–40

    Article  Google Scholar 

  • Sun M-K, Young BS, Hackett JT, Guyenet PG (1988): Rostral ventrolateral medullary neurons with intrinsic pacemaker properties are not catecholaminergic. Brain Res 451:345–349

    Article  Google Scholar 

  • Suzuki H, Ferrario CM, Speth RC, Brosnihan KB, Smeby RR, DeSilva P (1983): Alterations in plasma and cerebrospinal fluid norepinephrine and angiotensin II during the development of renal hypertension in conscious dogs. Hypertension 5(Suppl I):I139–I148

    Google Scholar 

  • Suzuki S, Takeshita A, Imaizumi T, et al. (1989): Central nervous system mechanisms involved in inhibition of renal sympathetic nerve activity induced by arginine vasopressin. Circ Res 65:1390–1399

    Google Scholar 

  • Sved AF, Imaizumi T, Talman WT, Reis DJ (1985): Vasopresin contributes to hypertension caused by nucleus tractus solitarius lesions. Hypertension 7:262–267

    Google Scholar 

  • Sved AF, Reis DJ (1985): Contributions of arginine vasopressin and the sympathetic nervous system to fulminating hypertension after destruction of caudal ventrolateral medulla in the rat. J Hypertens 3:491–501

    Google Scholar 

  • Swanson LW (1986): Organization of mammalian neuroendocrine system. In: Handbook of Physiology. The Nervous System. IV, Bloom FE, ed. Baltimore: Waverly Press

    Google Scholar 

  • Swanson LW (1987): The hypothalamus. In: Handbook of Chemical Neuroanatomy. Volume 5: Integrated Systems of the CNS, Part I. Hypothalamus, Hippocampus, Amygdala, Retina, Bjorklund A, Hokfelt T, Swanson LW, eds. New York: Elsevier

    Google Scholar 

  • Swanson LW, Kuypers HGJM (1980): The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194:555–570

    Article  Google Scholar 

  • Swanson LW, Sawchenko PE (1983): Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    Article  Google Scholar 

  • Szabadi E (1979): Adrenoceptors on central neurones: micoelectrophoretic studies. Neuropharmacology 18:831–843

    Article  Google Scholar 

  • Szabadi E, Bradshaw CM (1987): Alpha-1 adrenergic receptors in the central nervous system. In: The Alpha-1 Adrenergic Receptors, Ruffolo RR Jr, ed. Clifton, NJ: Humana Press

    Google Scholar 

  • Szemeredi K, Bagdy G, Stull R, Calogero AE, Kopin IJ, Goldstein DS (1988): Sympathoadrenomedullary inhibition by chronic glucocorticoid treatment in conscious rats. Endocrinology 123:2585–2590

    Article  Google Scholar 

  • Szemeredi K, Bagedy G, Stull R, Kopin IJ, Goldstein DS (1990): Cortisol and alpha-2 adrenergic regulation of sympathoneural activity. Biogenic Amines 7:445–454

    Google Scholar 

  • Szemeredi K, Komoly S, Kopin IJ, Bagdy G, Keiser HR, Goldstein DS (1991): Simultaneous measurement of plasma and extracellular fluid concentrations of catechols after yohimbine administration in rats. Brain Res 542:8–14

    Article  Google Scholar 

  • Takahashi Y, Satoh K, Sakumoto T, Tohyama M, Shimizu N (1979): A major source of catecholamine terminals in the nucleus tractus solitarii. Brain Res 172:372–377

    Article  Google Scholar 

  • Tanaka T, Yokoo H, Mizoguchi K, Yoshida M, Tsuda A, Tanaka M (1991): Noradrenaline release in the rat amygdala is increased by stress: Studies with intracerebral microdialysis. Brain Res 544:174–176

    Article  Google Scholar 

  • Terui N, Masuda N, Saeki Y, Kumada M (1990): Activity of barosensitive neurons in the cudal ventrolateral medulla that send axonal projections to the rostral ventrolateral medulla in rabbits. Neurosci Lett 118:2141–124

    Article  Google Scholar 

  • Teuber HL (1964): Some effects of frontal lobotomy in man. In: The Frontal Granular Cortex and Behavior, Warren JM, Akert K, eds. San Francisco: McGraw-Hill

    Google Scholar 

  • Thomas DN, Holman RB (1991): A microdialysis study of the regulation of endogenous noradrenaline release in the rat hippocampus. J Neurochem 56:1741–1746

    Article  Google Scholar 

  • Thor KB, Helke CJ (1988): Catecholamine-synthesizing neuronal projections to the nucleus tractus solitarii of the rat. J Comp Neurol 268:264–280

    Article  Google Scholar 

  • Timms RJ (1977): Cortical inhibition and facilitation of the defense reaction. J Physiol 266:98–99

    Google Scholar 

  • Truex RC, Carpenter MB (1969): Human Neuroanatomy. Baltimore: Williams & Wilkins

    Google Scholar 

  • Tucker DC, Saper CB, Ruggiero DA, Reis DJ (1987): Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord. J Comp Neurol 259:591–603

    Article  Google Scholar 

  • Turkkan JS, Goldstein DS (in press): Chronic effects of high salt intake and conflict stress on blood pressure in primates. Integrative Physiol Behav Sci 1991:26:269–281

    Google Scholar 

  • Unnerstall JR (1987): Localizing the alpha-1 adrenergic receptor in the central nervous system. In: The Alpha-1 Adrenergic Receptors, Ruffolo RR Jr, ed. Clifton, NJ: Humana Press

    Google Scholar 

  • U’Prichard DC, Kvetnansky R (1980): Central and peripheral adrenergic receptors in acute and repeated immobilization stress. In: Catecholamines and Stress: Recent Advances, Usdin E, Kvetnansky R, Kopin IJ, eds. New York: Elsevier

    Google Scholar 

  • U’Prichard DC, Reisine TD, Mason ST, Fibiger HC (1980): Modulation of rat brain α-and β-adrenergic receptor populations by lesion of the dorsal noradrenergic bundle. Brain Res 187:143–154

    Article  Google Scholar 

  • Vale W, Spiess J, Rivier C, Rivier J (1981): Characterization of a 41-residue ovine hypothalamic peptide that stimulates the secretion of corticotropin and β-endorphin. Science 213:1394–1397

    Article  Google Scholar 

  • Valentino RJ, Curtis AL, Parris DG, Wehby RG(1990): Antidepressant actions on brain noradrenergic neurons. J Pharmacol Exp Ther 253:833–840

    Google Scholar 

  • Valentino RJ, Foote SL (1987): Corticotropin-releasing factor disrupts sensory responses of brain noradrenergic neurons. Neuroendocrinology 45:28–36

    Article  Google Scholar 

  • Valentino RJ, Foote SL (1988): Corticotropin-releasing hormone increases tonic but not sensory-evoked activity of noradrenergic locus coeruleus neurons in unanesthetized rats. J Neurosci 8:1016–1025

    Google Scholar 

  • Valentino RJ, Wehby RG (1988): Corticotropin-releasing factor: Evidence for a neurotransmitter role in the locus coeruleus during hemodynamic stress. Neuroendocrinology 48:674–677

    Article  Google Scholar 

  • Van Bockstaele EJ, Pieribone VA, Aston-Jones G (1989): Diverse afferents converge on the nucleus paragigantocellularis in the rat ventrolateral medulla: Retrograde and anterograde tracing studies. J Comp Neurol 290:561–584

    Article  Google Scholar 

  • van den Berg DTWM, de Kloet ER, van Dijken HH, de Jong W (1990): Differential central effects of mineralocorticoid and glucocorticoid agonists and antagonists on blood pressure. Endocrinology 126:118–124

    Article  Google Scholar 

  • van Huysse JW, Bealer SL (1991): Central nervous system norepinephrine release during hypotension and hyperosmolality in conscious rats. Am J Physiol 260:R1071–R1076

    Google Scholar 

  • Verrier RL, Dickerson LW (1991): Autonomic nervous system and coronary blood flow changes related to emotional activation and sleep. Circulation 83(Suppl II):II–81–II–89

    Google Scholar 

  • Vogt M (1954): The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J Physiol 123:451–481

    Google Scholar 

  • Wallace DM, Magnuson DJ, Gray TS (1989): The amygdalo-brainstem pathway: Selective innervation of dopaminergic, noradrenergic and adrenergic cells in the rat. Neurosci Lett 97:252–258

    Article  Google Scholar 

  • Wang SC, Chai CY (1967): Central control of baroreceptor reflex mechanism. In: Baroreceptors and Hypertension, Kezdi P, ed. Oxford: Pergamon

    Google Scholar 

  • Wang SC, Ranson SW (1939): Autonomic responses to electrical stimulation of the lower brain stem. J Comp Neurol 71:437–455

    Article  Google Scholar 

  • Ward DG, Gunn CG (1976): Locus coeruleus complex: elicitation of a pressor response and a brain stem region necessary for its occurrence. Brain Res 107:401–406

    Article  Google Scholar 

  • Weidenfeld J, Feldman S (1991): Effect of hypothalamic norepinephrine depletion on median eminence CRF-41 content and serum ACTH in control and adrenalectomized rats. Brain Res 532:201–204

    Article  Google Scholar 

  • Weiss JM, Goodman PA, Losito BG, Corrigan S, Charry JM, Bailey WH (1981): Behavioural depression produced by an uncontrollable stressor: Relationship to norepinephrine, dopamine and serotonin levels in various regions of rat brain. Brain Res Rev 3:167–205

    Article  Google Scholar 

  • Weiss JM, Simson PG (1985): Neurochemical basis of stress-induced depression. Psychopharmacol Bull 21:447–457

    Google Scholar 

  • Westlund KN, Bowker RM, Ziegler MG, Coulter JD (1984): Organization of descending noradrenergic systems. In: Norepinephrine, Ziegler MG, Lake CR, eds. Baltimore: Williams & Wilkins

    Google Scholar 

  • Widmaier EP, Lim AT, Vale W (1989): Secretion of corticotropin-releasing factor from culture rat hypothalamic cells: Effects of catecholamines. Endocrinology 124:583–590

    Article  Google Scholar 

  • Wilffert B, Timmermans PBMWM, van Zwieten PA (1982): Extrasynaptic location of alpha-2 and noninnvervated beta-2 adrenoceptors in the vascular system of the pithed normotensive rat. J Pharmacol Exp Ther 221:762–768

    Google Scholar 

  • Willette RN, Barcas PP, Krieger AJ, Sapru HN (1983): Vasopressor and depressor areas in the rat medulla. Identification by microinjection of L-glutamate. Neuropharmacology 22:1071–1079

    Article  Google Scholar 

  • Willette RN, Krieger AJ, Barcas PP, Sapru HN (1983): Medullary amingobutyric acid (GABA) receptors and the regulation of blood pressure in the rat. J Pharmacol Exp Ther 226:893–899

    Google Scholar 

  • Winters RW, Ironson GH, Schneiderman N (1990): The neurobiology of anxiety. In: Anxiety and the Heart, Byrne DG, Rosenman RH, eds. New York: Hemisphere Publishing Corp

    Google Scholar 

  • Woodward DJ, Moises HC, Waterhouse BD, Hoffer BJ, Freedman R (1979): Modulatory actions of norepinephrine in the central nervous system. Fed Proc 2109–2116

    Google Scholar 

  • Woulfe JM, Flumerfelt BA, Hrycyshyn AW (1990): Efferent connections of the A1 noradrenergic cell group: A DBH immunohistochemical and PHA-L anterograde tracing study. Exp Neurol 109:308–322

    Article  Google Scholar 

  • Yamaguchi N, Brassard M (1988): A differential effect of yohimbine on adrenal and neuronal catecholamine release during bilateral carotid occlusion in the dog. J Auton Nerv Sys 25:141–153

    Article  Google Scholar 

  • Yamashita H, Kannan H, Ueta Y (1989): Involvement of caudal ventrolateral medulla neurons in mediating visceroceptive information to the hypothalamic paraventricular nucleus. Prog Brain Res 81:293–302

    Article  Google Scholar 

  • Yokoo H, Tanaka M, Yoshida M, Tsuda A, Tanaka T, Mizoguchi K (1990): Direct evidence of conditioned fear-elicited enhancement of noradrenaline release in the rat hypothalamus assessed by intracranial microdialysis. Brain Res 536:305–308

    Article  Google Scholar 

  • Yoshimatsu H, Oomura Y, Katafuchi T, Niijima A (1987): Effects of hypothalamic stimulation and lesion on adrenal nerve activity. Am J Physiol 253:R418–R424

    Google Scholar 

  • Zandberg P, DeJong W (1977): Localization of catecholaminergic receptor sites in the nucleus tractus solitarii involved in the regulation of arterial brain pressure. Prog Brain Res 47:117–122

    Article  Google Scholar 

  • Zerbe RL, Feuerstein G, Meyer DK, Kopin IJ (1982): Cardiovascular, sympathetic, and renin-angiotensin system responses to hemorrhage in vasopressin-deficient rats. Endocrinology 111:608–613

    Article  Google Scholar 

  • Zhang T-X, Ciriello J (1982): Lesions of paraventricular nucleus reverse the elevated arterial pressure after aortic baroreceptor denervation in the rat. Neurosci Abstr 8:434

    Google Scholar 

  • Zhang T-X, Harper RM, Ni H (1986): Cryogenic blockade of the central nucleus of the amygdala attenuates aversively conditioned blood pressure and respiratory responses. Brain Res 386:136–145

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Goldstein, D.S. (1992). Central Catecholamines and the Control of Sympathetic Tone. In: Kunos, G., Ciriello, J. (eds) Central Neural Mechanisms in Cardiovascular Regulation. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-9184-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9184-5_6

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-9186-9

  • Online ISBN: 978-1-4684-9184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics