Skip to main content

Extrachromosomal Circular DNA and Aging Cells

  • Chapter
Werner’s Syndrome and Human Aging

Abstract

A DNA sequence situated in the human genome between Alu-repeat clusters (“Inter-Alu” DNA) is progressively amplified in extrachromosomal DNA, including covalently closed DNA circles, during serial passage of diploid fibroblasts. A single size-class of Inter-Alu circles is also amplified in lymphocytes from 16 of 24 old donors and yet is not detected in cells from 18 young donors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baltimore, D., 1981, Gene conversion: some implications for immunoglobulin genes, Cell, 24: 592–594.

    Article  PubMed  CAS  Google Scholar 

  • Birnboim, H. C., and Doly, J., 1979, A rapid alkaline extraction procedure for screening recombinant plasmid DNA, Nucleic Acids Res., 7: 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  • Boyum, A., 1976, Isolation of lymphocytes, granulocytes and macrophages, Scand. J. Immunol. 5:9.

    Google Scholar 

  • Brown, D. D., and Blackler, A. W., 1972, Gene amplification proceeds by a chromosome copy mechanism, J. Mol. Biol. 63:75–83.

    Google Scholar 

  • Calabretta, B., Robberson, D. L., Barrera Saldana, H. A., Lambrou,T. P., and Saunders, G. F., 1982, Genome instability in a region of human DNA enriched in Alu repeat sequences, Nature, 296: 219.

    Article  PubMed  CAS  Google Scholar 

  • Calos, M. P., and Miller, J. H., 1980, Transposable elements, Cell, 20: 579–595.

    Article  PubMed  CAS  Google Scholar 

  • German, J., 1972, Genes which increase chromosomal instability in somatic cells and predispose to cancer, in: “Progress in Medical Genetics,” Vol. 8, Grune and Stratton, Inc., New York.

    Google Scholar 

  • Gillis, S., Kozak, R., Durante, M., and Weksler, M., 1981, Immuno-logical studies of aging: decreased production of and re-sponse to T cell growth factor by lymphocyte from aged humans,J. Clin. Invest., 67: 937–942.

    Google Scholar 

  • Green, M. M., 1980, Transposable elements on Drosophila and other diptera, Am. Rev. Genet. 14:109–120.

    Google Scholar 

  • Grimaldi, G., and Singer, M. F., 1982, A monkey Alu sequence is flanked by a 13 base pair direct repeats of an interrupted a-satellite DNA sequence, Proc. Natl. Acad. Sci. 79:1497–1500.

    Google Scholar 

  • Gupta, S., and Good, R. A., 1979, Subpopulations of human T lymphocytes, J. Immunol. 122:1214–1219.

    Google Scholar 

  • Harley, C. B., and Goldstein, S., 1978, Cultured human fibroblasts: distribution of cell generations and a critical limit, J. Cell. Physiol 97:509.

    Google Scholar 

  • Hayflick, L., 1977, The cellular basis for biological aging, in:“Handbook of the Biology of Aging,” C. E. Finch and L.Hayflick, eds., Van Nostrand Reinhold Co., New York, p. 159. Hayflick, L., and Moorhead, P. S., 1961, The serial cultivation of human diploid cell strains, Exp. Cell Res. 25:585–621.

    Google Scholar 

  • Hoehn, H., Bryant, E. M., Norwood, T. H., Boman, H., and Martin, G.M., 1975, Variegated translocation mosaicism in human skin fibroblast cultures, Cytogenet. Cell. Genet. 15:282–298.

    Google Scholar 

  • Krolewski, J. J., Berlelsen, A. H., Humayun, H. Z., and Rush, M.G., 1982, Members of the Alu family of interspersed,repetitive DNA sequences are in the small circular DNA population of monkey cells grown in culture, J. Mol. Biol. 154:399415.

    Google Scholar 

  • Martin, G. M., 1982, Syndromes of accelerated aging, Nat. Cancer Instit. Monog. No. 60:241–247.

    Google Scholar 

  • Norwood, T. H., Hoehn, H., Salk, D., and Martin, G. M., 1979, Cellular aging in Werners’ syndrome: a unique phenotype?, J. Invest. Derm. 73:92–96.

    Google Scholar 

  • Salk, D., Bryant, E., Au, K., Hoehn, H., and Martin, G. M., 1981a, Systematic growth studies, cocultivation and cell hybridization studies of Werners’ syndrome cultured skin fibroblasts, Human Genet 58: 310–316.

    CAS  Google Scholar 

  • Salk, D., Au, K., Hoehn, H., and Martin, G. M., 1981b, Cytogenetics of Werners’ syndrome cultured skin fibroblasts: variegated translocation mosaicism, Cytogenet. Cell. Genet. 30:92–107.

    Google Scholar 

  • Scherer, S., and Davis, R. W., 1980, Recombination of dispersed repeated DNA sequences in yeast, Science 209: 1380–1384.

    CAS  Google Scholar 

  • Schmid, C. W., and Jelinek, W. R., 1982, The Alu family of dis- persed repetitive sequences, Science 216: 1065–1070.

    CAS  Google Scholar 

  • Shmookler Reis, R. J., and Goldstein, S., 1980, Loss of reiterated DNA sequences during serial passage of human diploid fibroblasts, Cell, 21: 739.

    Article  Google Scholar 

  • Shmookler Reis, R. J., and Goldstein, S., 1982, Variability of DNA methylation patterns during serial passage of human diploid fibroblasts, Proc. Natl. Acad. Sci. 79, in press.

    Google Scholar 

  • Shmookler Reis, R. J., Lumpkin, C. K., McGill, J. R., Riabowol, K. T., and Goldstein, S., 1983a, Genome instability during in vitro and in vivo aging: amplification of extrachromosomal circular DNA molecules containing a chromosomal sequence of variable repeat frequency, Cold Spring Harbor Symposium on Quantitative Biology Vol. 47, Structure of DNA, in press.

    Google Scholar 

  • Shmookler Reis, R. J., Lumpkin, C. K., McGill, J. R., Riabowol, K. T., and Goldstein, S., 1983b, Extrachromosomal copies of an inter-Alu unstable element in human DNA are amplified during in vitro and in vivo aging, Nature in press.

    Google Scholar 

  • Smith, C. A., and Vinograd, J., 1972, Small polydisperse circular DNA of Hela cells, J. Mol. Biol. 69:163.

    Google Scholar 

  • Smith, C. A., Jordan, J. M., and Vinograd, J., 1971, In vivo effects of intercalatory drugs on the superhelix density of mitochondrial DNA isolated from human and mouse cells in culture, J. Mol. Biol. 59:255–272.

    Google Scholar 

  • Stanfield, S., and Helinski, D. R., 1976, Small circular DNA in Drosophila melanogaster, Cell, 9: 333.

    Article  PubMed  CAS  Google Scholar 

  • Walton, J., 1982, The role of limited cell replicative capacity in pathological age change, a review, Mech. Aging & Dev. 19:217244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Lumpkin, C.K., McGill, J.R., Riabowol, K.T., Moerman, E.J., Reis, R.J.S., Goldstein, S. (1985). Extrachromosomal Circular DNA and Aging Cells. In: Salk, D., Fujiwara, Y., Martin, G.M. (eds) Werner’s Syndrome and Human Aging. Advances in Experimental Medicine and Biology, vol 190. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7853-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7853-2_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7855-6

  • Online ISBN: 978-1-4684-7853-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics