Skip to main content

Interactions between insecticides and soil microbes

  • Conference paper
Residue Reviews

Part of the book series: Residue Reviews ((RECT,volume 64))

Abstract

The widespread use of insecticides over the past 30 years has resulted in problems caused by their interaction with natural biological systems. The complex interrelationship of these systems is illustrated in Figure 1. A problem due to contamination by residues may appear far removed from the initial point of introduction into the environment. For example, while some insecticides are intentionally applied directly to the soil to control soil insects, the soil is also a repository for chemicals from drift during foliar application, plant residues containing insecticides and their degradation products, and chemicals deposited by atmospheric precipitation. The persistence of insecticides and their degradation products depends on how deeply they are mixed into the soil; even the most persistent compounds disappear relatively quickly when on the soil surface, yet when incorporated into the soil they are very persistent (Edwards 1966). Generally insecticide residues will occur in the top 6 in. of soil (Chisholm et al. 1950, Harris and Sans 1969, Lichtenstein et al. 1962). This is also the region of greatest activity of soil fauna and flora (Alexander 1961), thus setting the stage for interaction of insecticide residues with the fauna and flora of the soil ecosystem. Recent monographs have considered the effects of insecticides on soil fauna (Edwards and Thompson 1973) and aquatic microorganisms (Ware and Roan 1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, M. K., and J. E. Casida: Metabolism of some organophosphorus insecticides by microorganisms. J. Econ. Entomol. 51, 59 (1958).

    CAS  Google Scholar 

  • Albone, E. S., G. Eglinton, N. C. Evans, J. M. Hunter, and M. M. Rhead: Fate of DDT in Severn estuary sediments. Environ. Sci. Technol. 6, 914 (1972).

    Article  CAS  Google Scholar 

  • Alexander, M.: Introduction to soil microbiology. New York: Wiley (1961). Biodegradation: Problems of molecular recalcitrance and microbial fallibility. Adv. Applied Microbiol. 1, 35 (1965).

    Article  Google Scholar 

  • Alexander, M.: Degradation of pesticides by soil bacteria. In T. R. G. Gray and D. Parkinson (ed.): Ecology of soil bacteria. Toronto: Univ. of Toronto (1968).

    Google Scholar 

  • Allan, J.: Loss of biological efficiency of cattle-dipping wash containing benzene hexachloride. Nature 175, 1131 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. P. E., and E. P. Lichtenstein: Effect of nutritional factors on DDT-degradation by Mucor alternans. Can. J. Microbiol. 17, 1291 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. P. E., and E. P. Lichtenstein: Effects of various soil fungi and insecticides on the capacity of Mucor alternans to degrade DDT. Can. J. Microbiol. 18, 553 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. P. E., and W. F. Whittingham: Effect of Mucor alternans on the persistence of DDT and dieldrin in culture and in soil. J. Econ. Entomol. 63, 1595 (1970).

    PubMed  CAS  Google Scholar 

  • Armstrong, D. E., and J. G. Konrad: Nonbiological degradation of pesticides. In R. C. Dinaver (ed.): Pesticides in soil and water, p. 123. Madison, Wis.: Soil Sci. Soc. Amer. (1974).

    Google Scholar 

  • Azad, M. I., and A. A. Khan: Studies upon the reduction of nitrogen losses through denitrification from paddy soil by the application of pesticides. W. Pakistan J. Agr. Research 6, 128 (1968).

    CAS  Google Scholar 

  • Bache, C. A., and D. J. Llsx: Determination of oxidative metabolites of dimethoate and Thimet in soil by emission spectroscopic gas chromatography. J. Assoc. Official Anal. Chemists 49, 647 (1966).

    CAS  Google Scholar 

  • Bailey, G. W., and J. L. White: Factors influencing the adsorption, desorption, and movement of pesticides in soil. Residue Reviews 32, 29 (1970).

    PubMed  CAS  Google Scholar 

  • Baluja, G., and M. A. Murado: Metabolism of aldrin by Penicillium glaucum. In A. S. Tahori (ed.): Pesticide chemistry. Proc. 2nd Internat. IUPAC Congress of Pest. Chem., Vol. 6, p. 273. Netherlands—New York—London: Gordon and Breach (1972).

    Google Scholar 

  • Bann, J. M., T. J. Decino, N. W. Earle, and Y. P. Sun: The fate of aldrin and dieldrin in the animal body. J. Agr. Food Chen. 4, 937 (1956).

    Article  CAS  Google Scholar 

  • Bardiya, M. C., and A. C. Gaur: Influence of insecticides on CO, evolution from soil. Indian J. Microbiol. 8, 233 (1968).

    CAS  Google Scholar 

  • Bardiya, M. C., and A. C. Gaur: Effect of some chlorinated hydrocarbon insecticides on nitrification in soil. Zentbl. Bakt. Parasitkde Abt. I I, 124, 552 (1970).

    Google Scholar 

  • Barker, P. S., and F. O. Morrison: The metabolism of TDE by Proteus vulgaris. Can. J. Zool. 43, 652 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Bartha, R., R. P. Lanzilotta, and D. Pramer: Stability and effects of some pesticides in soil. Applied Microbiol. 15, 67 (1967).

    CAS  Google Scholar 

  • Barthel, W. F., R. T. Murphy, and C. Corley: Insecticides residues. The fate of heptachlor in the soil following granular application to the surface. J. Agr. Food Chem. 8, 445 (1960).

    Article  CAS  Google Scholar 

  • Benezet, H. J., and F. Matsumura: Isomerization of ry-BHC to a-BHC in the environment. Nature 243, 480 (1973).

    Article  CAS  Google Scholar 

  • Bixby, M. W., G. M. Bouses, and F. Matsumura: Degradation of dieldrin to carbon dioxide by a soil fungus Trichoderma koningi. Bull. Environ. Contam. Toxicol. 6, 491 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Bollag, J. M., and S. Y. Lw: Degradation of Sevin by soil microorganisms. Soil Biol. Biochem. 3, 337 (1971).

    CAS  Google Scholar 

  • Bollag, J. M., and S. Y. Lw: Hydroxylations of carbaryl by soil fungi. Nature 236, 177 (1972 a).

    Google Scholar 

  • Bollag, J. M., and S. Y. Lw: Fungal degradation of 1-naphthol. Can. J. Microbiol. 18, 113 (1972 b).

    Google Scholar 

  • Bollen, W. B.: Interactions between pesticides and soil microorganisms. Ann. Rev. Microbiol. 15, 69 (1961).

    Article  CAS  Google Scholar 

  • Bollen, W. B., and C. M. Tu: Influence of endrin on soil microbial populations and their activity. U.S. Dept. Agr. Forest Serv. Res. Paper PNW-114, 4 p. (1971).

    Google Scholar 

  • Bollen, W. B., K. C. Lu, and R. F. Tarrant: Effect of Zectran on microbial activity in a forest soil. U.S. Dept. Agr. Forest Serv. Res. Note, PNW-124, 10 p. (1970).

    Google Scholar 

  • Bollen, W. B., J. E. Roberts, and H. E. Morrison: Soil properties and factors influencing aldrin-dieldrin recovering and transformation. J. Econ. Entomol. 51, 214 (1958).

    CAS  Google Scholar 

  • Bonderman, D. P., and E. Slach: Appearance of 1-hydroxychlordene in soil, crops, and fish. J. Agr. Food Chem. 20, 328 (1972).

    Article  CAS  Google Scholar 

  • Bourquin, A. W. J.: Microbial interactions with cyclodiene pesticides. Ph.D. Thesis, Univ. of Houston (1971).

    Google Scholar 

  • Bousn, G. M., and F. Matsumura: Insecticidal degradation by Pseudomonas melophthora, the bacterial symbiote of the apple maggot. J. Econ. Entomol. 60, 918 (1967).

    Google Scholar 

  • Bowman, M. C., H. C. Young, and W. F. Barthel: Minimal concentrations of aldrin, dieldrin, and heptachlor in soil for control of white-fringed beetles as determined by parallel gas chromatographic and biological assays. J. Econ. Entomol. 58, 896 (1965).

    CAS  Google Scholar 

  • Braithwaite, B. M., A. E. Jane, and F. G. Swain: Effect of insecticides on sod-sown sub-clovers. J. Austral. Inst. Agr. Sci. 24, 155 (1958).

    Google Scholar 

  • Bro-Rasmussen, F., E. Noddegaard, and K. Voldum-Clausen: Degradation of diazinon in soil. J. Sci. Food Agr. 19, 278 (1968).

    Article  CAS  Google Scholar 

  • Burge, W. D.: Anaerobic decomposition of DDT in soil. Acceleration by volatile components of alfalfa. J. Agr. Food Chem. 19, 375 (1971).

    Article  CAS  Google Scholar 

  • Caro, J. H., H. P. Freeman, D. W. Glotfelty, B. C. Turner, and W. M. Edwards: Dissipation of soil-incorporated carbofuran in the field. J. Agr. Food Chem. 21, 1010 (1973).

    Article  CAS  Google Scholar 

  • Carter, F. L., and C. A. Stringer: Residues and degradation products of technical heptachlor in various soil types. J. Econ. Entomol. 63, 625 (1970).

    PubMed  CAS  Google Scholar 

  • Carter, F. L., and D. Heinzelman: 1-Hydroxy-2,3-epoxychlordene in Oregon soil pre- viously treated with technical heptachlor. Bull. Environ. Contam. Toxicol. 6, 249 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Chacko, C. I., and J. L. Lockwood: Accumulation of DDT and dieldrin by microorganisms. Can. J. Microbiol. 13, 1123 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Chacko, C. I., and M. Zabik: Chlorinated hydrocarbon pesticides: Degradation by microbes. Science 154, 893 (1966).

    Article  CAS  Google Scholar 

  • Champ, B. R.: Protecting stored cereal seed from pests. Queensland Agr. J. 91, 449 (1965).

    Google Scholar 

  • Champ, B. R., D. I. Sillar, and H. J. Lavery: Seed harvesting and control in the Cloncurry district. Queensland J. Agr. Sci. 18, 257 (1961).

    Google Scholar 

  • Chandra, P.: Effect of two chlorinated insecticides on soil microflora and nitrification process as influenced by different soil temperatures and textures. In O. Graff and J. E. Satchell (ed.): Progress in soil biology, p. 320.

    Google Scholar 

  • Chisholm, R. D., L. K. Koblitzky, T. E. Fahey, and W. E. Westlake: DDT residues in soil. J. Econ. Entomol. 43, 941 (1950).

    CAS  Google Scholar 

  • Collins, J. A., and B. E. Langlois: Effect of DDT, dieldrin, and heptachlor on the growth of selected bacteria. Applied Microbiol. 16, 799 (1968).

    CAS  Google Scholar 

  • Cope, O. B.: Agricultural chemicals and fresh-water ecological systems. In C. O. Chichester (ed.): Research in pesticides, p. 115. New York: Academic Press (1965).

    Google Scholar 

  • Cowley, G. T., and E. P. Lichtenstein: Growth inhibition of soil fungi by insecticides and annulment of inhibition of yeast extract or nitrogenous nutrients. J. Gen. Microbiol. 62, 27 (1970).

    CAS  Google Scholar 

  • Crosby, D. G.: Experimental approach to pesticide photodecomposition. Residue Reviews 25, 1 (1969).

    PubMed  CAS  Google Scholar 

  • Crosby, D. G.: The nonbiological degradation of pesticides in soils. In: Pesticides in the soil: Ecology, degradation and movement. Internat. Symp. on Pesticides in the Soil, p. 86. East Lansing: Mich. State Univ. (1970).

    Google Scholar 

  • Dazzio, J. A.: Microbial degradation of endrin. Ph.D. Thesis, Louisiana State Univ. (1967).

    Google Scholar 

  • Derby, S. B., and E. Riser: Primary production: depression of oxygen evolution in algal cultures by organophosphorus insecticides. Bull. Environ. Contam. Toxicol. 5, 553 (1970).

    Article  CAS  Google Scholar 

  • Diatloff, A.: The effects of some pesticides on root nodule bacteria and subsequent nodulation. Austral. J. Expt. Agr. Animal Husbandry 10, 562 (1970).

    Article  Google Scholar 

  • Domscn, K. H.: Einflüsse von Pflanzenschutzmitteln auf die Bodenmikroflora. Mitteril. Biolog. Bunds. Land-und Forstwirt. Berlin-Daklem. 107, 1052 (1963).

    Google Scholar 

  • Domscn, K. H.: Soil fungicides. Ann. Review Phytopathol. 2, 293 (1964).

    Article  Google Scholar 

  • Domscn, K. H.: Effect of fungicides on microbial populations in soil. In Pesticides in the soil: Ecology, degradation and movement. Internat. Symp. on Pesticides in the Soil, p. 42. East Lansing: Mich. State Univ. (1970).

    Google Scholar 

  • Dougherty, E. M., C. F. Reichelderfer, and R. M. Faust: Sensitivity of Bacillus thuringiensis var. thuringiensis to various insecticides and herbicides. J. Invert. Pathol. 17, 292 (1971).

    Article  CAS  Google Scholar 

  • Edwards, C. A.: Insecticide residues in soils. Residue Reviews 13, 83 (1966).

    Article  CAS  Google Scholar 

  • Edwards, C. A.: Insecticides. In C. A. I. Goring and J. W. Hamaker (ed.): Organic chemicals in the soil environment, Vol. 2, p. 513. New York: Marcel Dekker (1972).

    Google Scholar 

  • Edwards, C. A., and A. R. Thompson: Pesticides and the soil fauna. Residue Reviews 45, 1 (1973).

    PubMed  CAS  Google Scholar 

  • Edwards, C. A., S. D. Beck, and E. P. Lichtenstein: Bioassay of aldrin and lindane in soil. J. Econ. Entomol. 50, 622 (1957).

    CAS  Google Scholar 

  • Elliot, J. M., C. F. Marks, and C. M. Tu: Effect of nematicides on Pratylenchus penetrans, soil microflora, and flue-cured tobacco. Can. J. Plant Sci. 52, 1 (1972).

    Article  CAS  Google Scholar 

  • El-Rafai, A., and T. L. Hopkins: Parathion absorption translocation, and conversion to paraoxon in bean plants. J. Agr. Food Chem. 14, 588 (1966).

    Article  Google Scholar 

  • Flashinski, S. J., and E. P. Lichtenstein: Metabolism of Dyfonate by soil fungi. Can. J. Microbiol. 20, 399 (1974 a).

    Google Scholar 

  • Flashinski, S. J., and E. P. Lichtenstein: Degradation of Dyfonate in soil inoculated with Rhizopus arrhizus. Can. J. Microbiol. 20, 871 (1974 b).

    Google Scholar 

  • Flashinski, S. J., and E. P. Lichtenstein: Environmental factors affecting the degradation of Dyfonate by soil fungi. Can. J. Microbiol. 21, 17 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Focht, D. D.: Microbial degradation of DDT metabolites to carbon dioxide, water and chloride. Bull. Environ. Contain. Toxicol. 7, 52 (1972).

    Article  CAS  Google Scholar 

  • Focht, D. D., and M. Alexander: DDT metabolites and analogs ring fission by Hydrogenomonas. Science 170, 91 (1970 a).

    Google Scholar 

  • Focht, D. D.: Bacterial degradation of diphenylmethane a DDT model substrate. Applied Microbiol. 20, 608 (1970 b).

    Google Scholar 

  • Focht, D. D.: Aerobic cometabolism of DDT analogues by Hydragenomonas sp. J. Agr. Food Chem. 19, 20 (1971).

    Article  CAS  Google Scholar 

  • French, A. L., and R. A. Hoopingarner: Dechlorination of DDT by membranes isolated from Escherichia coli. J. Econ. Entomol. 63, 756 (1970).

    PubMed  CAS  Google Scholar 

  • Garretson, A. L., and C. L. Sanclemente: Inhibition of nitrifying chemolitho- trophic bacteria by several insecticides. J. Econ. Entomol. 61, 285 (1968).

    PubMed  CAS  Google Scholar 

  • Gaur, A. C., and R. P. Pareek: Effect of dichlorodiphenyltrichloro-ethane (DDT) on leghemoglobin content of root nodules of Phaseolus aureus (green gram). Experientia 25, 777 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Getzin, L. W.: Metabolism of diazinon and Zinophos in soils. J. Econ. Entomol. 60, 505 (1967).

    CAS  Google Scholar 

  • Focht, D. D.: Persistence of diazinon and Zinophos in soil: effects of autoclaving, temperature, moisture, and acidity. J. Econ. Entomol. 61, 1560 (1968).

    Google Scholar 

  • Focht, D. D.: Persistence and degradation of carbofuran in soil. Environ. Entomol. 2, 461 (1973).

    Google Scholar 

  • Focht, D. D., and I. Rosefield: Persistence of diazinon and Zinophos in soils. J. Econ. Entomol. 59, 512 (1966).

    Google Scholar 

  • Focht, D. D.: Organophosphorus insecticide degradation by heat-labile substances in soil. J. Agr. Food Chem. 16, 598 (1968).

    Article  Google Scholar 

  • Focht, D. D., and C. H. Shanks, Jr.: Persistence, degradation,“ and bioactivity of phorate and its oxidative analogues in soil. J. Econ. Entomol. 63, 52 (1970).

    Google Scholar 

  • Gil, I., M. A. Martin, C. Ruano, and F. Aragones: Influence of some pesticides on Azotobacter. Microbiol. espan. 23, 271 (1970).

    CAS  Google Scholar 

  • Ginsburg, J. M., R. S. Filsaer, J. P. Reed, and A. R. Paterson: Recovery of parathion, DDT and certain analogs of dichlorodiphenyl dichloroethane from treated crops. J. Econ. Entomol. 42, 602 (1949).

    CAS  Google Scholar 

  • Glass, B. L.: Relation between the degradation of DDT and the iron redox system in soils. J. Agr. Food Chem. 20, 324 (1972).

    Article  CAS  Google Scholar 

  • Gray, P. H. H., and C. G. Rogers: Effects of benzenehexachloride on soil microorganisms. IV. Benzenehexachloride-resistant bacteria from virgin soils. Can. J. Microbiol. 1, 312 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Griffin, D. M., and G. Quail: Movement of bacteria in moist particulate systems. Austral. J. Biol. Sci. 21, 579 (1968).

    CAS  Google Scholar 

  • Griffiths, D. C., and N. Walker: Microbiological degradation of parathion. Mededelingen Faculteit Landbouwwetenschappen Gent. 35, 805 (1970).

    CAS  Google Scholar 

  • Guenzi, W. D., and W. E. Beard: Movement and persistence of DDT and lindane in soil columns. Proc. Soil Sci. Soc. Amer. 31, 644 (1967).

    Article  CAS  Google Scholar 

  • Guenzi, W. D., and W. E. Beard: Anaerobic conversion of DDT to DDD and aerobic stability of DDT in soil. Proc. Soil Sci. Soc. Amer. 32, 522 (1968).

    Article  CAS  Google Scholar 

  • Guenzi, W. D., and F. G. Viets, Jr.: Influence of soil treatment on persistence of six chlorinated hydrocarbon insecticides in the field. Proc. Soil Sci. Soc. Amer. 35, 910 (1971).

    Google Scholar 

  • Gunner, H. B.: Microbial ecosystem stress induced by an organophosphate insecticide. Mededelingen Faculteit Landbouwwetenschappen Gent. 35, 581 (1970).

    CAS  Google Scholar 

  • Gunner, H. B., B. M. Zuckerman: Degradation of “diazinon” by synergistic microbial action. Nature 217, 1183 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Gunner, H. B., R. W. Walker, C. W. Miller, K. H. Deubert, and R. E. Longley: The distribution and persistence of diazinon applied to plant and soil and its influence on rhizosphere and soil microflora. Plant Si Soil 25, 249 (1966).

    Article  CAS  Google Scholar 

  • Harris, C. R.: Laboratory studies on the persistence of biological activity of some insecticides in soils. J. Econ. Entomol. 62, 1437 (1969).

    PubMed  CAS  Google Scholar 

  • Harris, C. R.: Persistence and behavior of soil insecticides. In Pesticides in the soil: Ecology, degradation, and movement. Internat. Symp. on Pesticides in the Soil, p. 58. East Lansing: Mich. State Univ. (1970).

    Google Scholar 

  • Harris, C. R.: Factors influencing the effectiveness of soil insecticides. Ann. Rev. Entomol. 17, 177 (1972).

    Article  CAS  Google Scholar 

  • Harris, C. R., and W. W. Sans: Absorption of organochlorine insecticide residues from agricultural soils by root crops. J. Agr. Food Chem. 15, 861 (1967).

    Article  CAS  Google Scholar 

  • Harris, C. R., and W. W. Sans: Vertical distribution of residues of organochlorine insecticides in soils collected from six farms in southwestern Ontario. Proc. Entomol. Soc. Ontario 100, 156 (1969).

    CAS  Google Scholar 

  • Henzell, R. F., and R. J. Lancaster: Degradation of commercial DDT in silage. J. Sci. Food Agr. 20, 499 (1969).

    Article  CAS  Google Scholar 

  • Hicks, G. F., and T. R. Corner: Location and consequences of 1,1,1-trichloro-2,2bis (p-chlorophenyl) ethane uptake by Bacillus megaterium. Applied Microbiol. 25, 381 (1973).

    CAS  Google Scholar 

  • Hubbell, D. H., D. F. Rothwell, W. B. Wheeler, W. B. Tappan, and F. M. Rhoads: Microbial effects and persistence of some pesticide combinations in soil. J. Environ. Qual. 2, 96 (1973).

    Article  CAS  Google Scholar 

  • Isaac, I., and J. B. Heale: Wilt of lucerne caused by species of Verticillium. 3. Viability of V. alboatum carried with lucerne seed; effects of seed dressing and fumigants. Ann. Applied Biol. 49, 675 (1961).

    Article  CAS  Google Scholar 

  • Ishizawa, S., and T. Matsuguchi: Effects of pesticides and herbicides upon microorganisms in soil and water under waterlogged condition. Bull. Nat. Inst. Agr. Sci. Ser. B, 1 (1966).

    Google Scholar 

  • Jagnow, G., and K. Haider: Evolution of C“O2 from soil incubated with dieldrin-C’ and the action of soil bacteria on labelled dieldrin. Soil Biol. Biochem. 4, 43 (1972).

    CAS  Google Scholar 

  • Jensen, H. L.: Carbon nutrition of some microorganisms decomposing halogen-substituted aliphatic acids. Acta Agriculture Scandinavica 3, 404 (1963).

    Article  Google Scholar 

  • Johnson, B. T., and J. O. Kennedy: Biomagnification of p,p’-DDT and methoxychlor by bacteria. Applied Microbiol. 26, 66 (1973).

    CAS  Google Scholar 

  • Johnson, B. T., and C. O. Knowles: Microbial degradation of the acaricide N’-(4-chloro-O-tolyl)-N,N-dimethylformamidine. Bull. Environ. Contam. Toxicol. 5, 158 (1970).

    Article  CAS  Google Scholar 

  • Johnson, B. T., R. N. Goodman, and H. S. Goldberg: Conversion of DDT to DDD by pathogenic and saprophytic bacteria associated with plants. Science 157, 560 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Jones, R. J. The use of cyclodiene insecticides as liquid seed dressing to control bean fly (Melanagromyza phaseoli) in species of Phaseolus and Vigna marina in south-eastern Queensland. Austral. J. Expt. Agr. Animal Husbandry 5, 458 (1965).

    Article  Google Scholar 

  • Jönsson, A., and G. Fahreus: On the effect of aldrin on soil bacteria. Ann. Royal Agr. Col. Sweden 26, 323 (1960).

    Google Scholar 

  • Kallman, B. J., and A. K. Andrews: Reductive dechlorination of DDT to DDD by yeast. Science 141, 1050 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Kazano, H., P. C. Kearney, and D. D. Kaufman: Metabolism of methylcarbamate insecticides in soils. J. Agr. Food Chem. 20, 975 (1972).

    Article  CAS  Google Scholar 

  • Ko, W. H., and J. L. Locxwood: Conversion of DDT to DDD in soil and the effect of these compounds on soil microorganisms. Can. J. Microbiol. 14, 1069 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Ko, W. H., and J. L. Locxwood: Transfer of P2 and dieldrin among selected micro organisms in soil. Rev. Ecol. Biol. Sol. 7, 465 (1970).

    CAS  Google Scholar 

  • Kobayashi, T., and S. Katsura: The soil application of insecticides. 4. Effect of systemic organophosphates on soil nitrification and on the growth and yield of potatoes. Jap. J. Applied Entomol. Zool. 12, 53 (1968).

    Article  CAS  Google Scholar 

  • Koch, B., and H. J. Evans: Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol. 41, 1748 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Kokke, R.: DDT: Its action and degradation in bacterial populations. Nature 226, 977 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Konrad, J. G., and G. Chesters: Degradation in soils of ciodrin, an organophosphate insecticide. J. Agr. Food Chem. 17, 226 (1969).

    Article  CAS  Google Scholar 

  • Konrad, J. G., and D. E. Armstrong: Soil degradation of malathion, a phosphorodithioate insecticide. Proc. Soil Sci. Soc. Amer. 33, 259 (1969).

    Article  CAS  Google Scholar 

  • Korte, F.: Metabolism studies with C’ labelled drin-insecticides. 5th Internat. Pest. Congress, p. 30. London (1963).

    Google Scholar 

  • Korte, F.: Metabolism of chlorinated insecticides. IUPAC, Pest. Sect., Proc. Commission on Terminal Residues and of the Commission on Residue Analysis, p. 39. Vienna (1967).

    Google Scholar 

  • Korte, F., G. Ludwig, and J. Vogel: Umwandlung von Aldrin-C’ and Dieldrin-C’ durch Mikroorganismen, Leber Homogenate and Moskito-Laven. Liebigs Ann. 656, 135 (1962).

    Article  CAS  Google Scholar 

  • Langlois, B. E., J. A. Collins, and K. G. Sides: Some factors affecting degradation of organochlorine pesticides by bacteria. J. Dairy Sci. 53, 1671 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Ledford, R. A., and J. H. Chen: Degradation of DDT to DDE by cheese microorganisms. J. Food Sci. 34, 386 (1969).

    Article  CAS  Google Scholar 

  • Lemire, R., and V. Fredette: Action of DDT on bacteria. Rev. Can. Biol. 20, 833 (1961).

    CAS  Google Scholar 

  • Lichtenstein, E. P.: Insecticide uptake from soil. Insecticide residues in various crops grown in soils treated with abnormal rates of aldrin and heptachlor. J. Agr. Food Chem. 8, 448 (1960).

    Article  CAS  Google Scholar 

  • Lichtenstein, E. P.: Fate and movement of insecticides in and from soils. In Pesticides in the soil: Ecology, degradation and movement. Internat. Symp. on Pesticides in the Soil, p. 101. East Lansing: Mich. State Univ. (1970).

    Google Scholar 

  • Lichtenstein, E. P., and K. R. Schulz: Epoxidation of aldrin and heptachlor in soils as influenced by autoclaving, moisture and soil types. J. Econ. Entomol. 53, 192 (1960).

    CAS  Google Scholar 

  • Lichtenstein, E. P., and K. R. Schulz: Effect of soil cultivation, soil surface and water on the persistence of insecticidal residues in soils. J. Econ. Entomol. 54, 517 (1961).

    Google Scholar 

  • Lichtenstein, E. P., and K. R. Schulz: The effects of moisture and microorganisms on the persistence and metabolism of some organophosphorus insecticides in soil with special emphasis on parathion. J. Econ. Entomol. 57, 618 (1964).

    CAS  Google Scholar 

  • Lichtenstein, E. P., J. P. E. Anderson, T. W. Fuhremann, and K. R. Schulz: Aldrin and dieldrin: Loss under sterile conditions. Science 159, 1110 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein, E. P., T. W. Fuhremann, and K. R. Schulz: Effect of sterilizing agents on persistence of parathion and diazinon in soils and water. J. Agr. Food Chem. 16, 870 (1968).

    Article  CAS  Google Scholar 

  • Lichtenstein, E. P., T. W. Fuhremann, and K. R. Schulz: Persistence and vertical distribution of DDT, lindane, and aldrin residues. J. Agr. Food Chem. 19, 718 (1971).

    Article  CAS  Google Scholar 

  • Lichtenstein, E. P., C. H. Mueller, G. R. Myrdal, and K. R. Schulz: Vertical distribution and persistence of insecticidal residues in soils as influenced by mode of application and a cover crop. J. Econ. Entomol. 55, 215 (1962).

    Google Scholar 

  • Lichtenstein, E. P., G. R. Myrdal, and K. R. Schulz: Effect of formulation and mode of application of aldrin on the loss of aldrin and its epoxide from soils and their translocation into carrots. J. Econ. Entomol. 57, 133 (1964).

    CAS  Google Scholar 

  • Lin, S. H., B. R. Funke, and J. T. Schulz: Effects of some organophosphate and carbamate insecticides on nitrification and legume growth. Plant and Soil 37, 489 (1972).

    Article  CAS  Google Scholar 

  • Liu, S. Y., and J. M. Bollag: Metabolism of carbaryl by a soil fungus. J. Agr. Food Chem. 19, 487 (1971).

    Article  Google Scholar 

  • Liu, S. Y., and J. M. Bollag: Carbaryl decomposition to 1-naphthyl carbamate by Aspergillus terreus. Pest. Biochem. Physiol. 1, 366 (1972).

    Article  Google Scholar 

  • Mackenzie, K. A., and I. C. Macrae: Tolerance of the nitrogen-fixing system of Azotobacter vinelandii to four commonly used pesticides. Antonie van Leeuwenhoek J. Microbiol. Serol. 38, 529 (1972).

    CAS  Google Scholar 

  • Mackiewicz, M., K. H. Deubert, H. B. Gunner, and B. M. Zuckerman: Study of parathion biodegradation using gnotobiotic techniques. J. Agr. Food Chem. 17, 129 (1969).

    Article  CAS  Google Scholar 

  • Macphee, H. W., D. Chisholm, and C. R. Maceachen: The persistence of certain pesticides in the soil and their effect on crop yields. Can. J. Soil Sci. 40, 59 (1960).

    Article  CAS  Google Scholar 

  • Macrae, I. C., K. Raghu, and E. M. Bautista: Anaerobic degradation of the insecticide, lindane by Clostridium sp. Nature 221, 859 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Macrae, I. C. and T. F. Castro: Persistence and biodegradation of four common isomers of benzene hexachloride in submerged soils. J. Agr. Food Chem. 15, 911 (1967).

    Article  CAS  Google Scholar 

  • Martin, J. P.: The influence of pesticides on soil properties. Agr. Chemical West., pp. 9–12. Feb. (1966 a).

    Google Scholar 

  • Martin, J. P.: Influence of pesticides on soil microbes and soil properties. In: Pesticides and their effects on soils and water. Soil Sci. Soc. Amer., ASA special publ. 8, 95 (1966 b).

    Google Scholar 

  • Matsumura, F., and G. M. Boush: Malathion degradation by Trichoderma viride and a Pseudomonas species. Science 153, 1278 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, F., and G. M. Boush: Dieldrin: Degradation by soil microorganisms. Science 156, 959 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, F., and G. M. Boush: Degradation of insecticides by a soil fungus, Trichoderma viride. J. Econ. Entomol. 61, 610 (1968).

    PubMed  CAS  Google Scholar 

  • Matsumura, F., and A. Tax: Breakdown of dieldrin in the soil by a microorganism. Nature 219, 965 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, F., V. G. Khanvilkar, and K. C. Patil: Metabolism of endrin by certain soil microorganisms. J. Agr. Food Chem. 19, 27 (1971).

    Article  CAS  Google Scholar 

  • Matsumura, F., K. C. Patil, and G. M. Boush: Formation of photodieldrin by microorganisms. Science 170, 1206 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Meksongsee, B., and F. E. Guthrie: Degradation of chlorinated hydrocarbon insecticides by certain soil bacteria in broth culture. J. Elisha Mitchell Sci. Soc. 81, 81 (1965).

    Google Scholar 

  • Menzel, D. W., J. Anderson, and A. Randtke: Marine phytoplankton vary in their response to chlorinated hydrocarbons. Science 167, 1724 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Metcalf, R. L., G. K. Sangha, and I. P. Kapoon: Model ecosystem for the evaluation of pesticide biodegradability and ecological magnification. Environ. Sci. Technol. 5, 709 (1971).

    Article  CAS  Google Scholar 

  • Mice, D. L., and P. A. Dahm: Metabolism of parathion by two species of Rhizobium. J. Econ. Entomol. 63, 1155 (1970).

    Google Scholar 

  • Miles, J. R. W.: Arsenic residues in agricultural soils of southwestern Ontario. J. Agr. Food Chem. 16, 620 (1968).

    Article  CAS  Google Scholar 

  • Miles, J. R. W., C. M. Tu, and C. R. Harris: Metabolism of heptachlor and its degradation products by soil microorganisms. J. Econ. Entomol. 62, 1334 (1969).

    PubMed  CAS  Google Scholar 

  • Miles, J. R. W., C. M. Tu, and C. R. Harris: Degradation of heptachlor epoxide and heptachlor by a mixed culture of soil microorganisms. J. Econ. Entomol. 64, 839 (1971).

    PubMed  CAS  Google Scholar 

  • Milthorre, F. L.: The compatibility of protectant seed dusts with root nodule bacteria. J. Austral. Inst. Agr. Sci. 11, 89 (1945).

    Google Scholar 

  • Mitsui, S., I. Watanabe, and S. Honda: Effect of pesticides on denitrification in paddy soil. I. Japanese J. Soil Sci. Fertilizer 33, 469 (1962).

    CAS  Google Scholar 

  • Mitsui, S., and S. Hooafa: Action of pesticides on denitrification in paddy soils. II. Soil Sci. and Plant Nut. 10, 45 (1964).

    Google Scholar 

  • Miyaaioto, J., K. Kitacawa, and Y. Sato: Metabolism of organophosphorus insecticides by Bacillus subtilis, with special emphasis on Sumithion. Jap. J. Expt. Med. 36, 211 (1966).

    Google Scholar 

  • Miyazaki, S., and A. J. Thoasteinson: Metabolism of DDT by fresh water diatoms. Bull. Environ. Contain. Toxicol. 8, 81 (1972).

    Article  CAS  Google Scholar 

  • Miyazaki, S., G. M. Bouses, and F. Matsumura: Microbial degradation of chlorobenzilate (ethyl 4,4’-dichlorobenzilate) and chloropropylate (isopropyl 4,4’-dichlorobenzilate). J. Agr. Food Chem. 18, 87 (1970).

    Article  CAS  Google Scholar 

  • Mostafa, I. Y., I. M. Fakhr, M. B. Bahig, and Y. A. Elzawakr: Metabolism of organophosphorus insecticides. 13. Degradation of malathion by Rhizobium spp. Arch. Mikrobiol. 86, 221 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Munnecke, D. M., and D. P. H. Hsieh: Microbial decontamination of parathion and p-nitrophenol in aqueous media. Applied Microbiol. 28, 212 (1974).

    CAS  Google Scholar 

  • Murphy, R. T., and W. F. Barthel: Insecticide residues studies. Determination of heptachlor and heptachlor expoxide in soil. J. Agr. Food Chem. 8, 442 (1960).

    Article  CAS  Google Scholar 

  • Naumann, K.: Dynamics of the soil microflora following application of insecticides. I. Field trials on the effects of methyl parathion on the bacterial and actinomycetes population of soil. Zentbl. Bakt. Parasitkde Abt. 124, 743 (1970 a).

    Google Scholar 

  • Naumann, K.: Dynamics of the soil microflora following application of insecticides. II. Reaction of soil bacteria belonging to different physiological groups to field applications of methyl parathion. Zentble Bakt. Parasitkde Abt. 124, 755 (1970 b).

    Google Scholar 

  • Naumann, K.: Zur Dynamik der Bodenmikroflora nach Anwendung von Pflanzenschutzmitteln: III: Untersuchungen uber die Wirkung von Parathion-methyl auf den Mikroorganismenpopulationen von Lehm-und Sandboden. Pedobiologia 11, 227 (1971 a).

    Google Scholar 

  • Naumann, K.: Dynamics of the soil microflora following the application of insecticides. VI. Trials with the insecticides -y-BHC and toxaphene. Pedobiologia 11, 286 (1971 b).

    Google Scholar 

  • Naumann, K.: Alterations in the bacterial flora of soil following the application of pesticides. Zentbl. Bakt. Parasitkde Infektionskrankheiten und Hygiene, Zweite Abt. 126, 530 (1971 c).

    Google Scholar 

  • Newland, L. W., G. Chesters, and G. B. Lee: Degradation of y-BHC in simulated lake impoundments as affected by aeration. J. Water Pollut. Control Fed. 41, R 174 (1969).

    Google Scholar 

  • Nishihara, T.: Effect of some nitrification inhibitors on the availability of basal-dressed nitrogen to directly sown rice plants on a dry paddy field. Bull. Fac. Agr. Kagoshima Univ. No. 12, 107 (1962).

    Google Scholar 

  • Pareek, R. P., and A. C. Gaur: Effect of dichloro diphenyl-trichloro-ethane (DDT) on nodulation, growth, yield and nitrogen uptake of Pisum sativum inoculated with Rhizobium leguminosarum. Indian J. Microbiol. 9, 93 (1969).

    CAS  Google Scholar 

  • Pareek, R. P., and A. C. Gaur: Effect of dichloro diphenyl-trichloro-ethane (DDT) on symbiosis of Rhizobium sp. with Phaseolus aureus (green gram). Plant and Soil 33, 297 (1970).

    Article  CAS  Google Scholar 

  • Parr, J. F., and S. Smith: A multiple-purpose manifold assembly in evaluating microbiological effects of pesticides. Soil Sci. 107, 271 (1969).

    Article  CAS  Google Scholar 

  • Patil, K. C., F. Matsumura, arid G. M. Bouses: Degradation of endrin, aldrin and DDT by soil microorganisms. Applied Microbiol. 19, 879 (1970).

    CAS  Google Scholar 

  • Pfaender, F. K., and M. Alexander: Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities. J. Agr. Food Chem. 20, 842 (1972).

    Article  CAS  Google Scholar 

  • Plimmer, J. R., P. C. Kearney, and D. W. von Endt: Mechanism of conversion of DDT to DDD by Aerobacter aerogenes. J. Agr. Food Chem. 16, 594 (1968).

    Article  CAS  Google Scholar 

  • Plotasov, P. V., and G. I. Yarovenko: The role of disinfectants in increasing the effectiveness of nitrogen fertilizers on irrigated cotton fields. Udohr. Urozh 2, 31 (1958).

    Google Scholar 

  • Poonawalla, N. H., and F. Korte: Metabolism of (3-dihydrochloro-C“ in soil and by microorganisms. J. Agr. Food Chem. 16, 15 (1968).

    Article  CAS  Google Scholar 

  • Raghu, K., and I. C. Macrae: Biodegradation of gamma isomer of BHC in submerged soils. Science 154, 263 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Raghu, K., and I. C. Macrae: The effect of gamma isomer of BHC upon the microflora of submerged rice soils. II. Effect upon nitrogen mineralization and fixation, and selected bacteria. Can. J. Microbiol. 13, 621 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Rao, A. V., and N. Sethunathan: Degradation of parathion by Penicillium waksmani Zaleski isolated from flooded acid sulphate soil. Arch. Microbiol. 97, 203 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Rao, H. R. G., and P. K. Harein: Dichlorvos as an inhibitor of aflatoxin production on wheat, corn, rice, and peanut. J. Econ. Entomol. 65, 988 (1972).

    CAS  Google Scholar 

  • Rautapaa, J., H. Siltanen, A. L. Valta, and V. Mattinen: DDT, lindane and endrin in some agricultural soils in Finland. J. Sci. Agr. Soc. Finland 44, 199 (1972).

    CAS  Google Scholar 

  • Richardson, L. T., and D. M. Miller: Fungitoxicity of chlorinated hydrocarbon insecticides in relation to water solubility and vapor pressure. Can. J. Botany 38, 163 (1960).

    Article  CAS  Google Scholar 

  • Robson, H., and H. B. Gunner: Differential response of soil microflora to diazinon. Plant and Soil 33, 613 (1970).

    Article  CAS  Google Scholar 

  • Ross, D. J.: Influence of four pesticide formulations on microbial processes in a New Zealand pasture soil. II. N.trogen mineralization. N.Z. J. Agr. Res. 17, 9 (1974).

    Article  CAS  Google Scholar 

  • Ruhloff, M., and J. C. Burton: Compatibility of Rhizobia with seed protectants. Soil Sci. 72, 283 (1951).

    Article  CAS  Google Scholar 

  • Russell, M. J., and J. E. Coaldrake: The effect of some chlorinated hydrocarbon insecticides on nodulation of Medicago sativa and Glycine javanica. j. Austral. Inst. Agr. Sci. 32, 214 (1966).

    CAS  Google Scholar 

  • Sacrer, R. M., G. F. Ludrix, and J. M. Deming: Bioactivity and persistence of some parathion formulations in soil. J. Econ. Entomol. 65, 329 (1972).

    Google Scholar 

  • Salem, S. H.: Effect of insecticides on the physiological activity of effective and ineffective strains of Rhizobium trifolii. Agrokern. Talajtan 20, 302 (1971).

    CAS  Google Scholar 

  • Salem, S. H., and F. Gulyas: Effect of insecticides on the physiological behavior of the Azotobacter species. Agrokerl. Talajtan 20, 377 (1971).

    CAS  Google Scholar 

  • Salonius, P. O.: Effect of DDT and fenitrothion on forest-soil microflora. J. Econ. Entomol. 65, 1089 (1972).

    CAS  Google Scholar 

  • Schlagbauer, B. G. L., and A. W. Schlagbauer: The metabolism of carbarnate pesticides—A literature analysis. Residue Reviews 42, 1 (1972)

    PubMed  CAS  Google Scholar 

  • Selim, K. G., S. A. Z. Mahmoud, and M. T. El-Moxadem: Effect of dieldrin and lindane on the growth and nodulation of Vicia faba. Plant and Soil 33, 325 (1970).

    Article  CAS  Google Scholar 

  • Sethunathan, N.: Microbial degradation of insecticides in flooded soil and in anaerobic cultures. Residue Reviews 47, 143 (1973).

    PubMed  CAS  Google Scholar 

  • Sethunathan, N., and I. C. Macrae: Some effects of diazinon on the microflora of submerged soils. Plant and Soil 30, 109 (1969 a).

    Google Scholar 

  • Sethunathan, N., and I. C. Macrae: Persistence and biodegradation of diazinon in submerged soils. J. Agr. Food Chem. 17, 221 (1969 b).

    Google Scholar 

  • Sethunathan, N., and M. D. Pathak: Development of diazinon-degrading bacteria in paddy water after repeated applications of diazinon. Can. J. Microbiol. 17, 699 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Sethunathan, N., and M. D. Pathak: Increased biological hydrolysis of diazinon after repeated application in rice paddies. J. Agr. Food Chem. 20, 586 (1972).

    Article  CAS  Google Scholar 

  • Sethunathan, N., and T. Yoshida: Conversion of parathion to para-nitrophenol by diazinondegrading Flavobacterium sp. Proc. 18th Ann. Meeting Inst. Environ. Sci. 18, 255 (1972).

    CAS  Google Scholar 

  • Sethunathan, N., and T. Yoshida: A Flavobacterium sp. that degrades diazinon and parathion. Can. J. Microbiol. 19, 873 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Sethunathan, N., E. M. Boutista, and T. Yoshida: Degradation of benzene hexachloride by a soil bacterium. Can. J. Microbiol. 15, 1349 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Siddaramappa, R., K. P. Rajaram, and N. Sethunathan: Degradation of parathion by bacteria isolated from flooded soil. Applied Microbiol. 26, 846 (1973).

    CAS  Google Scholar 

  • Silverman, M. P.: Mechanism of bacterial pyrite oxidation. J. Bacteriol. 94, 1046 (1967).

    PubMed  CAS  Google Scholar 

  • Sinch, H., and V. S. Mehta: Study of the effect of chlorinated insecticides on nitrification of alluvial soils of Gwalior. Allahabad Fmr. 38, 269 (1964).

    Google Scholar 

  • Sivasithamparam, K.: Some effects of an insecticide (Dursban) and a weedicide (linuron) on the microflora of a submerged soil. Proc. Ceylon Assoc. Adv. Sci. 25, 1 (1969).

    Google Scholar 

  • Sivasithamparam, K.: Some effects of an insecticide Dursban and a weedicide linuron on the microflora of a submerged soil. Riso 19, 339 (1970).

    Google Scholar 

  • Sivastava, S. C.: The effect of Telodrin on nitrification of ammonia in soil and its implication on nitrogen nutrition of sugar cane. Plant and Soil 15, 471 (1966).

    Article  Google Scholar 

  • Smith, N. R., and M. E. Wenzel: Soil microorganisms are affected by some of the new insecticides. Proc. Soil Sci. Soc. Amer. 12, 227 (1947).

    Article  Google Scholar 

  • Spencer, E. Y.: Terminal residues of organophosphorus insecticides in soil and terminal residues of organophosphorus fumigants. In: Internat. Symp. Pure and Applied Chem., p. 3. Tel-Aviv, Israel (1971).

    Google Scholar 

  • Spencer, W. F.: Distribution of pesticides between soil, water, and air. In: Pesticides in the soil: Ecology, degradation, and movement. Internat. Symp. on Pesticides in the Soil, p. 120. East Lansing: Mich. State Univ. (1970).

    Google Scholar 

  • Stenersen, J.: Degradation of P 2-bromophos by microorganisms and seedlings. Bull. Environ. Contam. Toxicol. 4, 104 (1969).

    Article  CAS  Google Scholar 

  • Stewart, D. K. R., D. Chisholm, and M. T. H. Ragar: Long term persistence of parathion in soil. Nature 229, 47 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Stojanovic, B. J., M. V. Kennedy, and F. L. Shuman, jr.: Edaphic aspects of the disposal of unused pesticides, pesticides wastes, and pesticide containers. J. Environ. Qual. 1, 54 (1972).

    Article  CAS  Google Scholar 

  • Sup, R. K., A. K. Sun, and K. G. Gupta: Degradation of sevin (1-naphthyl N-methyl carbamate) by Arthrobacter species. Arch. Mikrobiol. 87, 353 (1972).

    Article  Google Scholar 

  • Suett, D. L.: Persistence and degradation of chlorfenvinphos, diazinon, fonofos and phorate in soils and their uptake by carrots. Pest. Sci. 2, 105 (1971).

    Article  CAS  Google Scholar 

  • Tarrant, R. F., D. G. Moore, W. B. Bollen, and B. R. Loper: DDT residues in forest floor and soil after aerial spraying, Oregon-1965–68. Pest. Monit. J. 6, 65 (1972).

    CAS  Google Scholar 

  • Tate, K. R.: Influence of four pesticide formulations on microbial processes in a New Zealand pasture soil. I. Respiratory activity. N. Z. J. Agr. Res. 17, 1 (1974).

    CAS  Google Scholar 

  • Timonin, M. I.: The interactions of higher plant and soil microorganisms. III. Effect of by-products of plant growth on activity of fungi and actinomycetes. Soil Sci. 52, 395 (1941).

    Article  Google Scholar 

  • Trela, J. M., W. J. Ralson, and H. B. Gunner: Metabolism of diazinon by soil microflora. Bacteriol. Proc. A30 (1968).

    Google Scholar 

  • Trudgill, P. W., and R. Widdus: Effects of chlorinated insecticides on metabolic processes in bacteria. Biochem. J. 118, 48 p. (1970).

    Google Scholar 

  • Trudgill, P. W. and J. S. Rees: Effects of organochlorine insecticides on bacterial growth, respiration and viability. J. Gen. Microbiol. 69, 1 (1971).

    PubMed  CAS  Google Scholar 

  • Tsukano, Y., and A. Kobayashi: Formation of y-BTC in flooded rice field soils treated with y-BHC. Agr. Biol. Chem. 36, 166 (1972).

    Article  CAS  Google Scholar 

  • Tu, C. M.: Effect of aldrin and dieldrin on microbiol activity in soil. Unpublished data (1968).

    Google Scholar 

  • Tu, C. M.: Effect of four organophosphorus insecticides on microbial activities in soil. Applied Microbiol. 19, 479 (1970).

    CAS  Google Scholar 

  • Tu, C. M.: Effect of four nematocides on activities of microorganisms in soil. Applied Microbiol. 23, 398 (1972).

    CAS  Google Scholar 

  • Tu, C. M.: The effect of Mocap, N-Serve, Telone and Vorlex at two temperatures on populations and activities of microorganisms in soil. Can. J. Plant Sci. 53, 401 (1973 a).

    Google Scholar 

  • Tu, C. M.: The temperature dependent effect of residual nematicides on the activities of soil microorganisms. Can. J. Microbiol. 19, 855 (1973 b).

    Google Scholar 

  • Tu, C. M.: Interaction between lindane and microbes in soils. Arch. Microbiol. 105, 131 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Tu, C. M. and W. B. Bollen: Effect of paraquat on microbial activities in soils. Weed Res. 8, 28 (1968 a).

    Google Scholar 

  • Tu, C. M. and W. B. Bollen: Interaction between paraquat and microbes in soils. Weed Res. 8, 38 (1968 b).

    Google Scholar 

  • Tu, C. M. and W. B. Bollen: Effect of Tordon herbicides on microbial activities in three Willamette valley soils. Down to Earth 25, 15 (1969).

    CAS  Google Scholar 

  • J. R. W. Miles and C. R. Harris: Soil microbial degradation of aldrin. Life Sci. 7, 311 (1968).

    Article  PubMed  Google Scholar 

  • Tucker, B. V., and D. E. Pack: Bux insecticide soil metabolism. J. Agr. Food Chem. 20, 412 (1972).

    Article  CAS  Google Scholar 

  • Ueyama, A., H. Egawa, and M. Tsuna: Absorption of 7-BHC by Fusarium roseum Link in culture. Ann. Phytopath. Soc. Japan 35, 347 (1969).

    Article  CAS  Google Scholar 

  • Ueyama, A., M. Masuxo, and H. Shikata: Biodegradation of pesticides by microorganisms. 3. Factors affecting the absorption of BHC isomers by fungal mycelium. Nippon Kingakku Kaiho 12, 103 (1971).

    CAS  Google Scholar 

  • Vance, B. D., and W. Drummon: Biological concentration of pesticides by algae. Amer. Water Works Assoc. J. 61, 360 (1969).

    Google Scholar 

  • Voerman, S., and P. M. L. Tammes: Adsorption and desorption of lindane and dieldrin by yeast. Bull. Environ. Contam. Toxicol. 4, 271 (1969).

    Article  CAS  Google Scholar 

  • Waksman, S. A., and R. L. Starkey: Partial sterilization of soil, microbiological activities and soil fertility. I-III. Soil Sci. 16, 137, 247, and 343 (1923).

    Google Scholar 

  • Walker, W. W., and B. J. Stojanovic: Microbial versus chemical degradation of malathion in soil. J. Environ. Qual. 2, 229 (1973).

    Article  CAS  Google Scholar 

  • Walker, W. W., and B. J. Stojanovic: Malathion degradation by an Arthrobacter species. J. Environ. Qual. 3, 4 (1974).

    Article  CAS  Google Scholar 

  • Ware, G. W., and C. C. Roan: Interaction of pesticides with aquatic microorganisms and plankton. Residue Reviews 33, 15 (1970).

    PubMed  CAS  Google Scholar 

  • Wedemeyer, G.: Dechlorination of DDT by Aerobacter aerogenes. Science 152, 647 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Wedemeyer, G.: Dechlorination of 1,1–1, trichloro-2,2-bis (p-chlorophenyl) ethane by Aerobacter aerogenes. Applied Microbiol. 15, 569 (1967 a).

    Google Scholar 

  • Wedemeyer, G.: Biodegradation of dichlorodiphenyltrichloroethane: Intermediates in dichlorodiphenylacetic acid metabolism by Aerobacter aerogenes. Applied Microbiol. 15, 1494 (1967 b).

    Google Scholar 

  • Wedemeyer, G.: Partial hydrolysis of dieldrin by Aerobacter aerogenes. Applied Microbiol. 16, 661 (1968).

    CAS  Google Scholar 

  • Wheeler, W. B.: Experimental absorption of dieldrin by Chlorella. J. Agr. Food Chem. 18, 416 (1970).

    Article  CAS  Google Scholar 

  • Winely, C. L., and C. L. Sanclemente: Inhibition by certain pesticides of the nitrite oxidation of Nitrobacter agilis. Bacteriol. Proc. A63 (1968).

    Google Scholar 

  • Winely, C. L., and C. L. Sanclemente: Effects of pesticides on nitrite oxidation by Nitrobacter agilis. Applied Microbiol. 19, 214 (1970).

    CAS  Google Scholar 

  • Yao, R. O., and D. P. H. Hsieh: Step of dichlorvos inhibition in the pathway of aflatoxin biosynthesis. Applied Microbiol. 28, 52 (1974).

    CAS  Google Scholar 

  • Young, W. R., and W. A. Rawlins: The persistence of heptachlor in soils. J. Econ. Entomol. 51, 11 (1958).

    CAS  Google Scholar 

  • Yule, W. N.: Intensive studies of DDT residues in forest soil. Bull. Environ. Contam. Toxicol. 9, 57 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Yule, W. N., M. Cirba, and H. V. Morley: Fate of insecticide residues. Decomposition of lindane in soil. J. Agr. Food Chem. 15, 1000 (1967).

    Article  CAS  Google Scholar 

  • Zamx, M. J., R. D. Scauetz, W. L. Burton, and B. E. Pape: Photochemistry of bioactive compounds. Studies of a major photolytic product of endrin. J. Agr. Food Chem. 19, 308 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag New York Inc.

About this paper

Cite this paper

Tu, C.M., Miles, J.R.W. (1976). Interactions between insecticides and soil microbes. In: Gunther, F.A., Gunther, J.D. (eds) Residue Reviews. Residue Reviews, vol 64. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7059-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7059-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7061-1

  • Online ISBN: 978-1-4684-7059-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics